孙闳绅
助理研究员
邮箱:sunhs@mit.edu
清华大学学士,佐治亚理工学院硕士,前腾讯高级算法工程师,曾任职于平安、思科等企业,在人工智能模型研发、落地等方向有多年实践经验。 主要研究兴趣为人工智能发展与应用,量化营销等。
数字化转型研究中心由孙天澍教授发起和主持。中心的使命是结合科技与商业,结合理论与实践,与企业,行业和政府一起摸索出一条有中国特色的产业数字化之路 --包括技术战略,商业设计,人才组织,行业标准和产业政策。 中心专注研究 1) 新科技与大数据 -- 特别是数据科学,人工智能,云计算和企业服务(IaaS/PaaS/SaaS),物联网,智能制造和物质科学,以及 2) 与新科技和大数据适配的商业设计(数字战略,敏捷组织,复合人才)和产业政策(行业标准,监管治理,赋能创新)。 中心希望兼顾技术的全球视野和产业的中国特色,建立一个共创平台推动对产业数字化的前沿讨论,顶层设计和技术落地。中心定期举办学术研讨,技术论坛和行业会议,支持科技与商业交叉学科的学术研究,教育培养,社区共享和企业合作。
孙天澍
Sun Tianshu
长江商学院科技与运营教授
数字化转型研究中心主任
邮箱:tianshusun@ckgsb.edu.cn
个人主页
孙天澍教授现任长江商学院科技与运营教授,在南加州大学获得终身教职以及Robert Dockson讲席教授, 同时兼任商学院与计算机系博士生导师。孙天澍的研究聚焦在企业数字化转型,包括数字化战略,数字化组织和数字化科技, 在中美顶尖企业有丰富的工作经历与合作实践(如Facebook,Adobe,阿里巴巴,网易等)。 孙天澍的学术研究和产业实践尤其关注技术与商业的交叉融合—特别是大数据,云计算, 物联网和人工智能如何持续的改变零售,金融,制造,物流,医疗和企业服务等行业。 孙天澍受邀在顶级大学(哈佛,MIT,沃顿商学院,芝加哥,斯坦福等)以及国际顶级学术会议上发表八十多场学术演讲, 并在Facebook, Google, Snapchat, 领英, 优步等顶级机构做数字化转型,大数据和平台战略的邀请分享和培训。 孙天澍的研究论文发表在信息系统,机器学习,经济学和商学院国际顶级期刊与会议, 获得16项最佳论文奖(包括芝加哥大学颁发的Wittink Prize年度最佳论文奖),以及USC颁发的年度最佳教授奖(Golden Apple Award)。 孙天澍教授担任多个国际顶级期刊常务和客座编委(MS, ISR, MISQ)和国际会议大会主席(CIST,WEBEIS),并获得多个顶级机构的研究支持。 孙天澍本科毕业于南京大学物理系,在马里兰大学修读物理,电子工程与经济学博士课程,获得信息系统博士学位。
孙闳绅
助理研究员
邮箱:sunhs@mit.edu
清华大学学士,佐治亚理工学院硕士,前腾讯高级算法工程师,曾任职于平安、思科等企业,在人工智能模型研发、落地等方向有多年实践经验。 主要研究兴趣为人工智能发展与应用,量化营销等。
马新程
助理研究员
邮箱:xinchengma-bp@ckgsb.edu.cn
北京航空航天大学物理学学士,中国科学院大学工商管理学硕士, 前京东大数据产品经理、营销经理,在大数据系统开发、数字营销、在线广告等领域有多年实践经验。 主要研究兴趣为数据隐私保护、企业数字化转型、数字营销等。
张晋
助理研究员
邮箱:jinzhang0516@gmail.com
北京理工大学管理学学士,阿里巴巴数据研发工程师。 个人擅长数据库、数据科学方向,主要研究兴趣为企业数字化转型、开放数据生态、大数据架构应用等
声明:以下是孙天澍教授作为作者在媒体上发表的所有学术和个人观点,教授所发表的媒体观点和采访的完整列表会在孙天澍教授的百度百科网页和本网页及时更新,这个列表代表孙天澍教授全部撰写和授权的学术和个人观点。孙天澍教授没有接受过任何列表之外媒体的采访或发表过任何列表之外的媒体观点。
(其他会议论文和工作论文请见孙天澍教授简历)
1. Tianshu Sun, Zhe Yuan, Chunxiao Li, Kaifu Zhang, Jun Xu (2020) The Value of Personal Data in Internet Commerce: A High-Stake Field Experiment on Data Regulation Policy, Forthcoming, Management Science
-- (See a review paper with Leading Economists on Data Value, Data Privacy, and Data Regulation which covers some of the experiment findings.
Presented/Scheduled at Harvard, MIT, U Chicago, CMU, NYU, UCLA, USC, BU, UT Austin, UMN, UBC, Purdue, Tsinghua, etc.
5. Tianshu Sun, Siva Viswanathan and Elena Zheleva (2021) “Creating Social Contagion through Firm Mediated Message Design: Evidence from a Randomized Field Experiment”, Management Science, 67(2), 808-827.
-- Best Dissertation Proposal (Runner-up), WITS 2015; Best Paper (Finalist), CSWIM 2015; Best Student Paper (3rd Place), INFORMS Service Science Society 2014; Winner, Marketing Science Institute (MSI) Research Competition 2014
6. Tianshu Sun and Sean Taylor (2020) “Displaying Things in Common to Encourage Friendship Formation: A Large Randomized Field Experiment”, Quantitative Marketing and Economics, 18, 237-271.
-- Winner of Dick Wittink Prize (Best Published Paper in QME 2020), Included in the Proceedings of ACM EC 2019, Talks at Facebook, LinkedIn, Snap, CODE/MIT, Wharton, CMU, BU, ASU, CUHK, KAIST, PKU, Tsinghua, Jiaotong
11. Mingxuan Yue, Tianshu Sun, Fan Wu, Lixia Wu, Yinghui Xu and Cyrus Shahabi (2020) “Learning Contextual and Topological Representations of Areas-of-Interest for On-Demand Delivery Application”, Proceedings of the 2020 European Conference on Machine Learning
-- ECML-PKDD 2020 Best Applied Data Science Award, Runner-up
12. JaeHwuen Jung, Ravi Bapna, Joseph Golden and Tianshu Sun (2020) (All contribute equally) “Words Matter! Towards Pro-social Call-to-Action for Online Referral: Evidence from Two Field Experiments”, Information Systems Research, 31(1), 16-36.
-- Knowledge@Wharton; Best Paper Finalist & Best Paper in E-Business, ICIS 2016
13. Tianshu Sun, Guodong (Gordon) Gao and Ginger Zhe Jin (2019), “Mobile Messaging for Offline Group Formation in Prosocial Activities: A Large Field Experiment”, Management Science, 65(6), 2445-2945.
-- Best Paper, CIST 2015; Best Paper (Honorable Mentions), INFORMS Doing Good with Good OR 2015; Best Student Paper (Finalist), WHITE 2015
14. Tianshu Sun, Lanfei Shi, Siva Viswanathan and Elena Zheleva (2019) “Motivating Effective Mobile App Adoption: Evidence from a Large-Scale Randomized Field Experiment”, Information Systems Research, 30(2), 523-539.
-- CIST 2016, SCECR 2016, Marketing Science 2017, Temple University 2017
15. Ni Huang, Tianshu Sun, Pei-yu Chen and Joseph Golden (2019) “Word-of-Mouth System Implementation and Customer Conversion: A Randomized Field Experiment”, Information Systems Research, 30(3), 805-818.
-- Best Paper (Finalist), ICIS 2017; Best Paper, ICIS E-Business Track 2017, CIST 2017
16. Tianshu Sun, Susan Feng Lu and Ginger Zhe Jin (2016), “Solving Shortage in a Priceless Market: Evidence from Blood Donation”, Journal of Health Economics, 48(2016):149-165.
-- Featured on Nobel Prize Laureate Al Roth’s blog and in NBER News; Winning Proposal, Institute for New Economic Thinking (INET) & Soros Foundation, 2013
(其他会议邀请演讲和顶尖科技企业邀请演讲请见孙天澍教授简历)
23. Keynote Speaker, Conference on AI Machine Learning and Business Analytics, 2019
25. Plenary Speaker, China and India Insights Conference, MIT Sloan, 2019
35. Business Research Applications Needing Data Science (BRANDS) Workshop, 2018
36. Korea Advanced Institute of Science and Technology (KAIST), 2018
43. Carnegie Mellon University, Tepper School of Business, 2018
45. Temple University (Center for Big Data in Mobile Analytics), 2017
47. USC Mini-Conference on Big Data in Business and Data Sciences, 2017
49. University of Minnesota, 2016 University of Rochester, 2016
52. Hong Kong University of Science and Technology (HKUST), 2016
D-TEAM(Discussion group on Technology & Economics of Data, AI and Marketplace)是由数字化转型研究中心主任孙天澍教授发起的同行学术交流研讨会。 内容聚焦在“大数据、人工智能和市场机制”的前沿研究,从数字技术和经济学两个角度切入,由包括信息系统,经济,金融,营销,统计,计算机学者共同主持参与。
大数据、人工智能和市场机制是新兴的跨学科研究领域,其研究方法和数据基础设施等正在快速发展,既依赖数字技术的突破,也需要经济理论的拓展。 D-TEAM希望建立前沿学者交流学习的阵地,通过学术同行交流讨论加速对“大数据、人工智能和市场机制”主题下各个学科中前沿研究和方法相互学习。 D-TEAM对以下方面的研究特别感兴趣:1)大数据和人工智能如何从根本上改变不同市场和产业(产业数字化);2)大数据和人工智能本身的商业发展和监管(如数据要素,数据定价,算法公平等)。
D-TEAM研讨活动的特点:
1.以研究为导向,研讨大数据、人工智能和市场机制领域的研究前沿;
2.技术视角(如推荐系统、自然语言处理、强化学习、隐私计算)和经济学视角(如数据定价,机制设计,网络效应)的交叉并行;
3.多学科交叉,包含信息系统、经济金融、市场营销、组织管理、计算机科学和统计学等;
4.研究中国特色的数字化转型问题(中国市场的独特实践/政策/数据,以及与其他国家和市场的产业数字化发展的比较)。
截至2022年11月,D-TEAM成功完成第一学年活动,邀请了11位不同学科领域的教授分享了各自关于大数据、人工智能和市场机制等领域的前沿研究,以及对相关研究课题的综述和总结,同行学术交流研讨会带来了跨学科视野,有效提升了与会者对于大数据,人工智能和市场机制各个学科的学术前沿和研究角度的理解,往期研讨内容和主题如下:
日期 | 主讲人 | 研讨主题 |
2022/8/3 | Tianshu Sun (CKGSB and USC) | Value of Personal Data & Impact of Privacy Regulation |
2022/8/10 | Zhao Jin (CKGSB) | AI, Human Capital and Firm Investment |
2022/8/17 | Bowen Lou (U Conn) | AI and Innovation: Ideas, Methods, Data Sources |
2022/8/24 | Yingjie Zhang (Peking U) | Human-AI Collaboration & Algorithm Fairness |
2022/8/31 | Brian Han (UIUC) | Data and AI in Business Process and Operation Management |
2022/9/7 | Danqing Mei (CKGSB) | Natural Language Processing in Economics and Finance |
2022/9/21 | Bing Jing (CKGSB) | Behavior-based Pricing and Advertising |
2022/9/28 | Yang Li (CKGSB) | Graph Neural Network In Marketing Research |
2022/10/12 | Yicheng Song (U Minnesota) | Reinforcement Learning: Intro & Business Applications |
2022/10/19 | Eddie Ning (UBC) | Imagining AI as an Economic "agent" |
2022/10/26 | Leng Yan (UT Austin) | Interpretable Machine Learning and Managerial Applications |
邮编:100738
邮箱:tianshusun@ckgsb.edu.cn
个人主页