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1 Introduction

Neither an entrepreneur in need of funding, nor anyone else for that matter, can legally

agree to enslave himself to a firm in exchange for financing by outside investors. This simple

observation has led Hart and Moore (1994) to formulate a theory of corporate external

financial constraints stemming from the inalienability of human capital. In a highly stylized

model of a firm with a single fixed project producing deterministic cash flows over a finite time

interval, in which both entrepreneur and investors are risk neutral and the entrepreneur’s

human capital is certain, they show that there is a continuum of optimal debt contracts

involving more or less rapid debt repayment paths. They also show that there is a unique

optimal debt contract when the entrepreneur and investors have different discount rates.

They argue that their framework provides a new foundation for a theory of corporate debt

as well as a theory of debt maturity, and that their model “does not have room for equity

per se” [pp 865].

In this paper we generalize the framework in Hart and Moore (1994) along several im-

portant dimensions: first, we introduce risky human capital and cash flows; second, we

let the entrepreneur be risk averse; third, we consider an infinitely-lived firm with ongoing

investment and consumption; and, fourth we add a limited liability or commitment con-

straint for investors. In this significantly more realistic and intricate framework we derive

the entrepreneur’s optimal financing, investment and consumption policy, and show how the

firm’s optimal financial contract can be implemented using replicating portfolios of standard

securities.

A first obvious reason for considering this more involved framework is to explore how the

Hart and Moore theory of debt based on the inalienability of human capital generalizes and

how the introduction of risky human capital modifies the theory. But, more importantly,

our framework reveals that Hart and Moore’s focus on the notion of a firm’s “debt capacity”

is misleading. As it turns out, this is not the most relevant metric for the firm’s optimal

financial policy when human capital is risky. Rather, we show that the two key state variables

summarizing the firm’s financial policy are the firm’s liquidity buffer or “financial slack” and

the firm’s hedging position or “risk management”. That is, inalienability of risky human

capital is not a foundation for a theory of debt capacity, but rather a foundation for a theory

1



of corporate liquidity and risk management. There are hints of the relevance of corporate

liquidity in Hart and Moore’s discussion of their theory1, however they do not emphasize the

importance of this variable. Also, as a result of the absence of any risk in their framework

they overlook the importance of the firm’s hedging policy.

For convenience we introduce risk in the form of shocks to the capital stock, which affect

the profitability of investment. Most importantly, these shocks induce risky inalienable hu-

man capital and introduce a stochastic dynamic participation constraint for the entrepreneur.

That is, whether the entrepreneur is willing to stay with the firm now depends on the history

of realized capital shocks. When there is a positive shock, the entrepreneur’s human capi-

tal is higher and she must receive a greater promised compensation to be induced to stay.

But the entrepreneur is averse to risk and has a preference for smooth consumption. These

two opposing forces give rise to a novel dynamic optimal contracting problem between the

infinitely-lived risk-averse entrepreneur and the fully diversified (or risk-neutral) investors.

A key step in our analysis is to show that the optimal long-term contracting problem

between investors and the entrepreneur can be reduced to a recursive formulation with a

single key state variable w, the ratio of the entrepreneur’s promised certainty equivalent

wealth under the contract and her human capital. The optimal recursive contract then

specifies three state-contingent variables: i) the entrepreneur’s consumption-capital ratio

c(w); ii) the firm’s investment-capital ratio i(w), and; iii) the firm’s risk exposure x(w) or

hedging policy. This contract maximizes investors’ payoff while providing insurance to the

entrepreneur and retaining her. The optimal contract thus involves a particular form of the

well-known tradeoff between risk sharing and incentives in a model of capital accumulation

and limited commitment. Here the entrepreneur’s dynamic participation constraint at each

point in time is in effect her incentive constraint. She needs to be incentivized to stay rather

than deploy her human capital elsewhere.

If the entrepreneur were able to alienate her human capital the optimal contract would

simply provide her with a constant flow of consumption and shield her from any risk. Under

this contract the firm’s investment policy reduces to the familar Tobin’s Q based policy. But

1On pages 864-865 they write: “There is some evidence that firms borrow more than they strictly need
to cover the cost of their investment projects, in order to provide themselves with a “financial cushion.”
This fits in with our prediction in Proposition 2 about the nature of the slowest equilibrium repayment path;
indeed, it is true of most paths.”
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under inalienable human capital the entrepreneur must be prevented from leaving, especially

when accumulated capital is high. To retain the entrepreneur in these states of the world the

optimal contract must promise her higher wealth and consumption when the capital stock

is high, thus exposing her to risk.

Following the characterization of the optimal dynamic corporate policy (c(w), i(w), x(w))

we proceed with the implementation of this policy in terms of familiar standard dynamic

financing structures. In particular, we show that the optimal contract can be implemented

by delegating control over the firm to the entrepreneur in exchange for a credit line with

an endogenously determined stochastic limit S. The entrepreneur then maximizes her life-

time utility by optimally choosing her consumption-capital ratio c(s), investment-capital

ratio ι(s), and hedge-capital ratio φ(s) as a function of her savings s. In other words, the

optimal contract under risky inalienable human capital can be implemented via a credit line

combined with optimal cash management and dynamic hedging policies.

The optimal contract provides the entrepreneur with a flat consumption stream as long

as the capital stock does not grow too large. When the capital stock increases as a result of

investment or positive shocks to the point where the entrepreneur’s participation constraint

may be violated the contract provides a higher consumption stream to the entrepreneur.

Given that the entrepreneur’s consumption and wealth are positively correlated with the

capital stock under the optimal contract the firm will generally underinvest relative to the

benchmark of fully alienable human capital, as long as investors can perfectly commit to

an optimal stochastic credit-line limit S (what we refer to as the one-sided commitment

problem).

In the two-sided commitment problem, where a limited liability constraint for investors

must also hold, we obtain further striking results. The firm may now overinvest and the

entrepreneur overconsume (compared with the first-best benchmark). The intuition is as

follows. In order to make sure that investors do not have incentives to default on their

promised future utility for the entrepreneur, the entrepreneur’s scaled promised wealth w

cannot be too high otherwise the investors will end up with negative valuations for the firm.

As a result, the entrepreneur needs to substantially increase investment and consumption in

order to satisfy the investors’ participation constraint.
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Related literature. Our paper provides foundations for a dynamic theory of liquidity and

risk management based on risky inalienable human capital. As such it is obviously related

to the early important contributions on corporate risk management by Stulz (1984), Smith

and Stulz (1985) and Froot, Scharfstein, and Stein (1993). Unlike our setup, they consider a

static framework with exogenously given financial frictions to show how corporate cash and

risk management can create value by relaxing these financial constraints.

Our paper is also evidently related to the corporate security design literature, which

seeks to provide foundations for the existence of corporate financial constraints, and for the

optimal external financing by corporations through debt or credit lines. This literature can

be divided into three separate strands. The first approach provides foundations for external

debt financing in a static optimal contracting framework with either asymmetric information

and costly monitoring (Townsend, 1979, and Gale and Hellwig, 1985) or moral hazard (Innes,

1990, and Holmstrom and Tirole, 1997).

The second more dynamic optimal contracting formulation derives external debt and

credit lines as optimal financial contracts in environments where not all cash flows generated

by the firm are observable or verifiable (Bolton and Scharfstein, 1990, DeMarzo and Fish-

man, 2007, Biais, Mariotti, Plantin, and Rochet, 2007, DeMarzo and Sannikov, 2006, Biais,

Mariotti, Rochet, 2010, and DeMarzo, Fishman, He and Wang, 2012; see Sannikov, 2012,

for a recent survey of this literature).

The third approach which is closely related to the second provides foundations for debt fi-

nancing based on the inalienability of human capital (Hart and Moore, 1994, 1998). Rampini

and Viswanathan (2010, 2013) extend this framework to consider when corporate risk man-

agement add value. A key result in their framework is that hedging may not be an optimal

policy for firms with limited capital that they can pledge as collateral. For such firms hedging

demand, in effect, competes for limited collateral with investment demand. They show that

for growth firms the return on investment may be so high that it crowds out hedging de-

mand. Li, Whited, and Wu (2014) structurally estimate optimal contracting problems with

limited commitment along the line of Rampini and Viswanathan (2013) providing empirical

evidence in support of these class of models.

The latter two approaches are often grouped together because they yield closely re-

lated results and the formal frameworks are almost indistinguishable under the assumption
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of risk-neutral preferences for the entrepreneur and investors. However, as our analysis

with risk-averse preferences for the entrepreneur makes clear, the two frameworks are dif-

ferent, with the models based on non-contractible cash flows imposing dynamic incentive

constraints that restrict the set of incentive compatible financial contracts, while the models

based on inalienable human capital only impose (dynamic) participation constraints for the

entrepreneur. With the exception of Gale and Hellwig (1985) the corporate security design

literature makes the simplifying assumption that the contracting parties are risk neutral. By

allowing for risk-averse entrepreneurs, we not only generalize the results of this literature on

the optimality of debt and credit lines, but we are able to account for the fundamental role

of corporate savings and risk management (via futures or options or other commonly used

derivatives), and also to provide micro-foundations for executive compensation contracts.

The most closely related papers to ours are by Ai and Li (2013) and Ai, Kiku, and Li

(2013), who have independently considered a similar contracting framework to study how

investment and managerial compensation vary with firm size and to derive an endogenous

size distribution of firms that is consistent with Zipf’s law. Our focus is somewhat different,

as we seek to characterize the dynamics of optimal corporate liquidity and risk management.

Our paper also contributes to the macroeconomics literature that studies the implica-

tions of dynamic agency on firms’ investment and financing decisions. Albuquerque and

Hopenhayn (2004), Quadrini (2004) and Clementi and Hopenhayn (2006) study firms’ fi-

nancing and investment decisions under a limited commitment or inalienability of human

capital assumption similar to ours. Lorenzoni and Walentin (2007) study Tobin’s Q and

investment under a similar limited enforcement assumption. Finally, Grochulski and Zhang

(2011) consider a risk sharing problem under limited commitment.2

Our financial implementation of the optimal financial contract is also related to the port-

folio choice literature featuring illiquid productive assets and under-diversified investors in an

incomplete-markets setting. Building on Merton’s intertemporal portfolio choice framework,

Wang, Wang, and Yang (2012) study a risk-averse entrepreneur’s optimal consumption-

savings decision, portfolio choice, and capital accumulation when facing uninsurable id-

2Green (1987), Thomas and Worrall (1990), Marcet and Marimon (1992), Kehoe and Levine (1993) and
Kocherlakota (1996) are important early contributions on optimal contracting under limited enforcement.
See Ljunqvist and Sargent (2004) Part V for a textbook treatment on these class of models widely used in
macro.
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iosyncratic capital and productivity risks. Unlike Wang, Wang, and Yang (2012), our model

features optimal liquidity and risk management policies that arise endogenously from an

underlying financial contracting problem.

Our framework also provides a micro-foundation for the dynamic corporate savings mod-

els that take external financing costs as exogenously given. Hennessy and Whited (2005,

2007), Riddick and Whited (2009), and Eisfeldt and Muir (2014) study corporate invest-

ment and savings in a model with financial constraints. Bolton, Chen, and Wang (2011,

2013) study the optimal investment, asset sales, corporate savings, and risk management

policies for a firm that faces external financing costs. It is remarkable that although these

models are substantially simpler and more stylized the general results on the importance of

corporate liquidity and risk management are broadly similar to those derived in our paper

based on more primitive assumptions. Conceptually, our paper shows that to determine the

dynamics of optimal corporate investment, a critical variable in addition to the marginal

value of capital (marginal q) is the firm’s marginal value of liquidity. Indeed, we establish

that optimal investment is determined by the ratio of marginal q and the marginal value

of liquidity, which reflects the tightness of external financing constraints.3 Our model thus

shares a similar focus on the marginal value of liquidity as Bolton, Chen, and Wang (2011,

2013) and Wang, Wang, and Yang (2012).

2 The model

We consider an optimal long-term contracting problem with limited commitment to par-

ticipate between an infinitely-lived risk-neutral investor (the principal) and a financially

constrained, infinitely-lived, risk-averse entrepreneur (the agent). The entrepreneur requires

funding from the investor to finance a proprietary business idea for a growth venture that

we represent as a production function and a capital accumulation process. We begin by

describing the production technology and the entrepreneur and investor’s preferences before

formulating the dynamic optimal contracting problem between the two agents.

3Pinkowitz and Williamson (2004), Faulkender and Wang (2006), Pinkowitz, Stulz, andWilliamson (2006),
Dittmar and Mahrt-Smith (2007), and Bolton, Schaller, and Wang (2014) empirically measure the marginal
value of cash.
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2.1 Capital Accumulation and Production Technology

Let I denote the gross investment by the entrepreneurial firm. We assume that the capital

stock K accumulates as follows:

dKt = (It − δKt)dt+ σKKtdZt , (1)

where Z is a standard Brownian motion, δ ≥ 0 is the expected rate of depreciation and

σ is the volatility of a capital depreciation shock. This specification of shocks is used in

equilibrium models including Cox, Ingersoll, and Ross (1985), Jones and Manuelli (2005),

and Barro (2009), among others.

The firm’s capital stock can be interpreted as either tangible capital (property, plant and

equipment), firm-specific intangible capital (patents, know-how, brand value, and organiza-

tional capital), or any combination of these.

Production requires combining the entrepreneur’s inalienable human capital with the

firm’s asset/production technology. When the two are united the firm’s revenues are given

by AtKt, where Kt is the firm’s capital stock and {At; t ≥ 0} is a stochastic productivity

shock. To keep the analysis simple, we model At as a two-state Markov regime-switching

process, where At ∈
{
AL, AH

}
with 0 < AL < AH , and λn is the transition intensity out of

state n = L or H to the other state.4 In other words, given a current value of, say, At = AL,

the firm’s productivity changes to AH with probability λLdt in the time interval (t, t + dt).

The productivity process {At; t ≥ 0} is observable to both the investor and entrepreneur,

and is therefore contractible. The firm’s output is given by AtKt.

Accumulating capital incurs both purchase and also adjustment costs. The firm’s cash

flows (after these capital costs) are given by:

Yt = AtKt − It −G(It, Kt), (2)

where the price of the investment good is normalized to unity and G(I,K) is the standard

adjustment cost function in the q-theory of investment of Hayashi (1982) and Abel and

4Piskorski and Tchistyi (2007) consider a model of mortgage design in which they use a Markov-switching
process to describe interest rates. DeMarzo, Fishman, He, and Wang (2012) use a Markov-switching process
to model the persistent productivity shock.
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Eberly (1994). Importantly, Y can be negative which means that the investor would be

financing investment I and associated adjustment costs G beyond the current revenue AK.

We follow this literature and assume that the firm’s adjustment cost G(I,K) is homogeneous

of degree one in I and K, so that G(I,K) takes the following homogeneous form:

G (I,K) = g(i)K, (3)

where i = I/K denotes the firm’s investment-capital ratio and g(i) is an increasing and

convex function. As Hayashi (1982) has first shown, with this homogeneity property Tobin’s

average and marginal q are equal under perfect capital markets.5 However, as we will show,

under limited commitment to participate an endogenous wedge between Tobin’s average and

marginal q will emerge in our model.6 Note that (2) does not yet incorporate managerial

compensation, which we will include later.

Hart and Moore (1994) is a simple version of our model without production. That

is, our model boils down to the framework considered by Hart and Moore (1994), when

we set: i) σK = 0 so that there are no shocks to the capital stock; ii) δ = 0, so that

the initial capital does not depreciate; iii) It = 0, so that there is no endogenous capital

accumulation; and iv) At = A > 0 for all t ≥ 0, so that there are no shocks to earnings. In

other words, our framework adds to the basic Hart and Moore (1994) setup an endogenous

capital accumulation process and shocks to both productivity and capital. Our goal is to

explore the interactions of productivity shocks {At; t ≥ 0} and capital shocks {Zt; t ≥
0} on corporate investment/asset sales, financial slack, risk management, and managerial

compensation, when the entrepreneur and investor contract under limited commitment to

participate as in Hart and Moore (1994).

5Lucas and Prescott (1971) analyze dynamic investment decisions with convex adjustment costs, though
they do not explicitly link their results to marginal or average q. Abel and Eberly (1994) extend Hayashi
(1982) to a stochastic environment and a more general specification of adjustment costs.

6An endogenous wedge between Tobin’s average and marginal q also arises in cash-based optimal financing
and investment models such as Bolton, Chen, and Wang (2011) and optimal contracting models such as
DeMarzo, Fishman, He, and Wang (2012).
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2.2 Preferences

We further generalize the Hart and Moore (1994) setup by introducing risk aversion for the

entrepreneur. Thus, the infinitely-lived risk-averse entrepreneur has a standard time-additive

separable expected utility function over expected positive consumption flows {Ct; t ≥ 0}
given by:

Vt = Et
[∫ ∞

t

ζe−ζ(v−t)U(Cv)dv

]
, (4)

where ζ > 0 is the entrepreneur’s subjective discount rate, U(C) is an increasing and concave

function, and Et [ · ] is the time-t conditional expectation. We assume that the entrepreneur

has constant relative risk aversion (CRRA) preferences and that U(C) takes the standard

iso-elastic constant-relative-risk-averse (CRRA) utility form:

U(C) =
C1−γ

1− γ
, (5)

where γ > 0 is the coefficient of relative risk aversion.7 W can generalize our model with

essentially no technical complication to separate the coefficient of relative risk aversion from

the inverse of the elasticity of intertemporal substitution by using Epstein-Zin preferences.8

2.3 The Entrepreneur’s Outside Option

The entrepreneur’s human capital is inalienable and she can at any time leave the firm.

When the entrepreneur exits she obtains an outside payoff of V̂n(Kt) (in utils) in state

n ∈ {L,H}. In other words, V̂n(Kt) is the entrepreneur’s outside value function, which in

general is endogenous and depends on accumulated capital Kt and productivity An at the

moment of exit as well as other features of the economic environment characterizing the

entrepreneur’s outside option. Given the endogenous outside option value (in utils) for the

entrepreneur, the entrepreneur’s participation constraint at each point in time t is therefore

given by:

Vt ≥ V̂n(Kt) , t ≥ 0. (6)

7Note that since we have normalized the value function with the constant ζ in (4), the utility flow in our
model is ζU(C) as in various dynamic contracting models.

8Detailed notes are available upon request. Intuitively, as Epstein-Zin preferences are homothetic, our
model analysis will not increase the dimensionality of the optimization problem.
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Our formulation of the entrepreneur’s interim participation constraints can be interpreted

in several ways. A first natural interpretation is that when she quits the entrepreneur

absconds with a fraction α ∈ (0, 1) of the firm’s capital stock and find a new investor to

finance her venture. The fraction of capital she makes off with may for example include

all the know-how she has acquired running the firm, the firm’s proprietary technology, and

trade secrets. A second interpretation is that the entrepreneur puts her human capital to use

in a competing firm where she can obtain a maximum payoff of V̂n(Kt). In this case, there is

no diversion and the outside option value simply reflects the entrepreneur’s human capital.

A third interpretation is that the entrepreneur absconds a fraction of capital stock and then

operates in autarky and hence forgoes inter temporal consumption-smoothing opportunities.9

To intuitively exposit our analysis, we will use the first interpretation. We will also discuss

the alternatives in Section 7.

We thus generalize the setup in Hart and Moore (1994) by introducing a risky outside op-

tion for a risk-averse entrepreneur in addition to substantially enriching the entrepreneur’s

production technology and providing a dynamic valuation framework in the spirit of q-

theoretic framework. We show that the riskiness of the entrepreneur’s inalienable human

capital and risk aversion significantly enrich the optimal contract, yielding broad predic-

tions that are consistent with observed dynamic corporate financial policies. Since the en-

trepreneur is assumed to be risk neutral in Hart and Moore (1994), their model features

indeterminacy on the equilibrium repayment path. In our model, as we will show, the en-

trepreneur’s risk aversion allows us to uniquely pin down the equilibrium repayment path.

2.4 The Contracting Problem

Without loss of generality we assume that the investor has all the bargaining power and that

the contracting game begins at time 0 with the investor making a take-it-or-leave-it long-

term contract offer to the entrepreneur, which specifies funding for an investment process

I = {It; t ≥ 0}, and a consumption allocation C = {Ct; t ≥ 0} for the entrepreneur, in return

for the business income {Yt; t ≥ 0}. The investment and consumption processes can depend

on the entire history of stochastic productivity {At; t ≥ 0}, capital stock {Kt; t ≥ 0}, and

9This interpretation is commonly used in the international macro literature. See Bulow and Rogoff (1989).
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output {Yt; t ≥ 0}.

We consider two-sided limited-enforcement frictions where neither the investor nor the

entrepreneur can fully commit to continuing under the contract in perpetuity. We assume

that the investor is protected by limited liability and he can’t commit to a long-term contract

that yields negative net present value at any point in time. Specifically, at each point in

time t, investors cannot commit to ex post negative net present value (NPV) projects, which

implies the following constraints:

Ft ≡ Et
[∫ ∞

t

e−r(v−t)(Yv − Cv)dv
]
≥ 0 . (7)

As we will show, this constraint plays a very important role for the optimal contract. For

example, this constraint can generate over-investment in equilibrium. While surprising, it is

intuitive as the investor also has incentive problems in this formulation. By over-investing,

it relaxes the constraints for the investor to deviate from the optimal contract.

While with a two-sided limited-commitment friction, a long-term contract for the en-

trepreneur and the investor has the spirit of an optimal stopping game where both the

entrepreneur and investors can exercise their perpetual American options at any time, in

equilibrium, the contract will be set such that neither will exercise their options.

At the moment of contracting, time 0, the entrepreneur has a reservation utility level V0,

so that the optimal contract must also satisfy the constraint:

V0 ≥ V0 . (8)

Without loss of generality, we require that V0 ≥ V̂n(K0) where the value of A0 is An with

n ∈ {L,H}, for otherwise the entrepreneur would immediately walk away at time 0.

We assume that the output process Y is publicly observable and verifiable. In addition,

we assume that the entrepreneur cannot privately save, as is standard in the literature

on dynamic moral hazard (see Bolton and Dewatripont, 2005 chapter 10). Under these

assumptions the only agency problem that arises in our setting is due to the entrepreneur’s

limited-commitment problem and the investors’ limited liability constraint.

The investor’s problem at time 0 is thus to choose dynamic investment I and consumption
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C to maximize the time-0 discounted value of cash flows,

max
I, C

E0

[∫ ∞
0

e−rt(Yt − Ct)dt
]
, (9)

subject to the capital accumulation process (1), the production function (2), the entrepreneur’s

limited-commitment constraints (6) at all t and investor’s limited-liability condition (7) at

all t, and the time-0 participation constraint (8).

Intuitively, the participation (8) constraint is always binding under the optimal con-

tract. Otherwise, the investors can always increase their value by lowering the agent’s

consumption and still satisfying all other constraints. However, the entrepreneur’s limited-

commitment constraints (6) and the investors’ limited-liability constraint (7) will often not

bind as the investor dynamically trades off the benefits of providing the entrepreneur with

risk-sharing/consumption smoothing and the costs of causing the investors’ and the en-

trepreneur’s limited commitment constraints to bind too often.

3 The Full-Commitment First-Best Benchmark

Before fully characterizing the optimal contract, we first analyze the optimal outcome under

full commitments by both investors and the entrepreneur. Our contracting problem then

reduces to the neoclassical setting of Hayashi (1982) with stochastic productivity. Intuitively,

the risk-neutral investor simply buys off the entire venture from the risk-averse entrepreneur

at time 0 for the reservation utility V0 and takes on all the output risk. The investor then

maximizes the present discounted value of the venture’s cash flows with respect to I.

Given the stationarity of the economic environment and the homogeneity of the produc-

tion technology with respect to K, there is an optimal productivity-dependent investment-

capital ratio in = I/K in state n ∈ {L,H} that maximizes the present value of the venture.

The following proposition summarizes the main results under full commitment.

Proposition 1 In each state n ∈ {L,H}, the firm’s value QFB
n (K) is proportional to its
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capital K, QFB
n (K) = qFBn K, where qFBn is Tobin’s q in state n. For state H, qH solves:

(r + δ) qFBH = max
i

(
AH − i− g(i)

)
+ λH

(
qFBL − qFBH

)
, (10)

and the maximand for (10), denoted by iFBH , is the first-best investment-capital ratio.

Because of homogeneity, return and present value relations hold for both the whole firm

and also each unit of capital K. The first term on the right side of (10), AH − i − g(i), is

the firm’s cash flow per unit of time. And the second term, λH
(
qFBL − qFBH

)
, is the expected

capital gains per unit of time, given by the product of probability λH per unit of time and

the realized capital gains/losses qFBL − qFBH conditional on the change of productivity from

H to L. At optimality, the expected rate of return on capital is given by the sum of the

discount rate r and the expected deprecation rate of capital δ, explaining the left side of

(10). An essentially similar (and symmetric) valuation equation holds for qFBL .

Note that qFBn is the familiar Tobin average q, which under constant returns to scale is

also the marginal value of capital, often referred to as marginal q, as Hayashi (1982) has

shown in a deterministic setting. Adjustment costs create a wedge between the value of

installed capital and newly purchased capital, so that that qFB 6= 1 in general.

We can also express Tobin’s q and optimal investment via the first-order condition (FOC):

qFBn = 1 + g′(iFBn ), n = L,H, (11)

which states that the marginal q, is equal to the marginal cost of investing, 1+g′(i), evaluated

at the optimum investment iFBn . By jointly solving (10) and (11) and similar two equations

for state L, we obtain the values for qFBn and iFBn , where n ∈ {L,H}.

For the full-commitment case, the entrepreneur is perfectly insured and obtains a deter-

ministic consumption stream that is independent of the firm’s investment dynamics:

Ct = C0 e
−(ζ−r)t/γ , t ≥ 0 . (12)

To the extent that the investor and entrepreneur have different discount rates, ζ 6= r, the

optimal contract will be structured so that they can trade consumption intertemporally with
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each other. Specifically, consumption changes exponentially at a rate −(ζ − r)/γ per unit

of time, where 1/γ should be interpreted as the elasticity of intertemporal substitution,

which is the inverse of the coefficient of relative risk aversion for standard CRRA utility

functions. Thus, depending on the sign of (ζ − r) the entrepreneur’s consumption may grow

or decline deterministically over time. It is only when the investor and the entrepreneur are

equally impatient (ζ = r) that the entrepreneur’s consumption is constant over time under

the optimal full-commitment contract.

To complete the solution for the full-commitment case, we now explicitly solve the initial

consumption C0. First, we show that for a given level of the entrepreneur’s utility V , we can

calculate the corresponding certainty equivalent wealth (CEW) by inverting the expression

V (W ) = U(bW ) and obtain:

W = U−1(V )/b, (13)

where U−1( · ) is the inverse function of the CRRA utility (5) and b is a normalization

constant given by

b = ζ

[
1

γ
− r

ζ

(
1

γ
− 1

)] γ
γ−1

. (14)

As a special case, when γ = 1, we have b = ζe
r−ζ
ζ . Because the entrepreneur’s participation

constraint (6) at time 0 will always bind due to the investor’s optimality, the entrepreneur’s

reservation utility V0 implies that the initial CEW W0 satisfies W0 = U−1(V0)/b. And the

entrepreneur’s initial consumption C0 is proportional to W0, in that

C0 = χW0 =

(
ζ

b

) 1
γ

((1− γ)V0)
1

1−γ , (15)

where χ is the marginal propensity to consume (MPC) given by

χ = b1− 1
γ ζ

1
γ = r + γ−1 (ζ − r) . (16)

In the Appendix, we show that the entrepreneur’s utility process, denoted by V FB
t , under
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the first-best setting is then given by

V FB
t = U(bWt) = U(bCt/χ) ∼ V0 e

−(ζ−r)(1−γ)t/γ , (17)

where U( · ) is given by (5). For the special case where ζ = r, the entrepreneur’s utility under

the first-best case is time-invariant, in that V FB
t = U(C0) = V0, as consumption is flat at all

times. Because the entrepreneur’s outside option value V̂n(Kt) growths stochastically with

K, the entrepreneur’s participation constraint will bind at some point, which will then lead

to a renegotiation of the original first-best contract implying that the first-best contract is

infeasible under limited-commitment constraints.

In summary, under perfect capital markets, the first-best investment-capital ratio iFB

depends on the current state n ∈ {L,H} but is independent of capital shocks and the

investor perfectly insures the entrepreneur’s consumption smoothing preference. As we will

show next, the entrepreneur’s inability to fully commit to the venture indefinitely and the

investors’ limited liability significantly alters these conclusions.

4 Optimal Dynamic Contracting

The first-best outcome is not achievable when the entrepreneur or investors cannot commit

to stay. The simple reason is that under the first-best optimal investment policy, the firm’s

capital stock grows (in expectation) over time and there will be cut-off values of K
H

t and

K
L

t such that when Kt > K
H

t in state H or when Kt > K
L

t in state L, we will have

V̂n(Kt) > V FB
t , where V FB

t is given by (17). In this case, the first-best contract will not be

honored by the entrepreneur as she would simply walk away at that point. To prevent such

an outcome the investor writes a second-best contract where he commits to a consumption

flow {Ct : t ≥ 0} for the entrepreneur such that Vt ≥ V̂n(Kt) at all time t and in both H

and L productivity states. Since V̂n(Kt) is a stochastic process, this second-best contract

would inevitably expose the entrepreneur to consumption risk. Similar arguments apply to

the friction induced by investors’ limited liability condition. While it protects investors from

losses ex post, limited liability limits the contracting space. As a result, there will be states

of the world where Kt is such that the investors’ value is negative.
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In summary, our dynamic contracting problem involves a specific form of the classic

agency tradeoff between risk-sharing provision to the agent and incentive mis-alignment

induced by the entrepreneur’s and/or investors’ limited commitment problems. An im-

portant difference, however, from the standard dynamic moral hazard problem is that the

entrepreneur and investor’s dynamic participation constraint often will not bind. The reason

is that if the contract under two-sided commitment were to always hold the entrepreneur

down to her participation constraint or up to investor’s participation constraint then the

entrepreneur’s promised consumption would be inefficiently volatile.

4.1 Formulating the optimal contracting problem

The second-best dynamic contracting problem involves making contingent investment {It; t ≥
0} and consumption promises {Ct; t ≥ 0} to the entrepreneur. Generally, the contracting

problem solution is history-dependent. Importantly, we can summarize the history depen-

dence by using the entrepreneur’s promised utility V , as in DeMarzo and Sannikov (2006)

among others.

The optimal contract requires that the sum of utility flow ζU(Ct−))dt and the change of

the agent’s promised utility dVt has an expected value ζVtdt in that

Et− [ζU(Ct−))dt+ dVt] = ζVt−dt , (18)

To provide some intuitive reasoning for (18), we construct a stochastic process {Ût, t ≥ 0}
as follows:

Ût =

∫ t

0

e−ζvζU(Cv)dv + e−ζtVt = Et
[∫ ∞

0

ζe−ζvU(Cv)dv

]
. (19)

Under technical integrability conditions, we know that {Ût; t ≥ 0} is a martingale in that

Et[Ûs] = Ût for all s and t such that s > t. Applying Ito’s formula to the marginal process

Û given in (19) and using the property that a martingale’s drift is zero, we obtain (18).

Intuitively, delivering a marginal unit of consumption to the entrepreneur lowers his

promised utility V by reducing its drift ζVt− by ζU(Ct−), and hence we have the following
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equivalent representation of (18):

Et− [dVt] = ζ (Vt− − U(Ct−)) dt. (20)

Recall that there are two shocks, the capital shock (via the Brownian motion Z) and the

productivity shock (via the two-state Markov chain.) So we may write down the stochastic

differential equation (SDE) for dV implied by (18) as the sum of (i) the expected change

(i.e., drift) term Et− [dVt], (ii) a martingale term driven by the Brownian motion Z, and (iii)

a martingale term driven by the productivity shock driven by the Markov chain.

Letting Nt denote the cumulative number of productivity changes up to time t. For

notational simplicity, suppose that the current productivity at time t− is H. We may write

the dynamics of the entrepreneur’s promised utility process V as follows:

dVt = ζ(Vt− − U(Ct−))dt+ xt−Vt−dZt + ΓH(Vt−, A
H)(dNt − λHdt) , (21)

where {xt; t ≥ 0} controls the diffusion volatility of the entrepreneur’s promised utility V ,

and ΓH(Vt−, A
H) controls the endogenous adjustment of promised utility V conditional on

the change of productivity from AH to AL. Intuitively, the first term on the right side of (21)

is the expected change of dVt as implied by (18), the second term is the unexpected change

due to capital shock Z, and the last term captures the mean-zero unexpected component

of dVt due to the change of productivity. As λH is the probability per unit of time for

productivity to switch from AH to AL, the expected value of (dNt − λHdt) is zero.

By using the entrepreneur’s promised utility process V , we make the investor’s dy-

namic contracting problem Markovian with the following three state variables: (1) the

entrepreneur’s promised utility V , (2) the venture’s capital stock K, and (3) the state of

productivity n ∈ {L,H}. Let F (K,V,An) denote the investor’s value function.

The contract specifies dynamic investment I, consumption C, as well as risk exposure x

and the adjustment of promised utility Γn to solve the following optimization problem,

F (Kt, Vt, A
n) = max

C, I, x,Γn
Et
[∫ ∞

t

e−r(v−t)(Yv − Cv)dv
]
, (22)
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subject to the entrepreneurs’ limited commitment constraint (6) and the investors’ limited-

liability condition (7) as well as the entrepreneur’s initial participation constraint (8).

Next, we characterize the investor’s optimization problem in the interior region and then

we characterize the boundary conditions.

The interior region. For expositional simplicity, suppose that the current state is H.

Then, the following Hamilton-Jacobi-Bellman (HJB) equation holds:

rF (K,V,AH) = max
C, I, x,ΓH

{
Y − C + (I − δK)FK +

σ2
KK

2

2
FKK + [ζ(V − U(C))− λHΓH ]FV

+
(xV )2

2
FV V + σKxKV FV K + λH [F (K,V + ΓH , A

L)− F (K,V,AH)]

}
.(23)

The right side of (23) gives the expected change of the investor’s value function F (K,V,AH).

The first term is the venture’s flow profit Y − C to the investor, which can be negative. In

this case, the investor is financing operating losses. The second term reflects the expected

change of the investor’s value F (K,V,AH) resulting from the expected (net) capital accu-

mulation (I − δK) and the third term represents the expected change in the investor’s value

resulting from the volatility of the capital shock. These first three terms are the ones in

standard resource allocation problem (between consumption and investment).

The fourth and fifth terms in turn reflect the change in investor’s value from the drift

and volatility of the entrepreneur’s promised utility V . And the sixth term captures how

the investor’s value is affected by the (perfect) correlation between K and V . Finally,

the last term captures the effect of the persistent productivity shock on the value function.

Importantly, in addition to the direct effect on the investor’s value F , the productivity switch

from AH to AL also has an indirect effect on the investor’s value F due to the endogenous

adjustment of the entrepreneur’s promised utility from V to V + ΓH .

As the investor earns the rate of return r at all times, the sum of all terms on the right

side of (23) must equal to rF (K,V,AH) which is on the left side of (23). In state n ∈ {L,H},
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the first-order conditions (FOCs) with respect to C, I, and x are:

ζU ′(C∗) = − 1

FV (K,V,AH)
, (24)

FK(K,V,AH) = 1 +GI(I
∗, K), (25)

x∗ = − σKKFV K
V FV V (K,V,AH)

, (26)

The FOC (24) characterizes the entrepreneur’s optimal consumption C∗, which states that

the entrepreneur’s marginal utility of consumption ζU ′(C∗) equals −1/FV , which is positive

as FV < 0. Note that we need multiply −FV with the entrepreneur’s marginal utility

ζU ′(C) to calculate the investor’s marginal benefit of increasing consumption. At optimality,

this marginal benefit −FV ζU ′(C) has to equal to unity, which is the risk-neutral investor’s

marginal cost of providing a unit of consumption.

Second, (25) characterizes the investors’ optimal investment decision. Investment opti-

mality implies that marginal benefit of investing to the investor, FK(K,V,An), must equal

to 1 + GI(I,K), the marginal cost of investing. Unlike the standard q-theoretic investment

models, our model sets the marginal condition from the investor’s perspective. Finally, (26)

characterizes the optimal exposure of the entrepreneur’s promised utility V to the shock of

capital accumulation. As there is only one exogenous diffusion shock in the model, V and

K are locally perfectly correlated. As we show later, x is closely tied to the firm’s optimal

risk management policy.

We now turn to the choices of ΓH , the discrete change of the entrepreneur’s promised

utility contingent on the change of the productivity from H to L. Intuitively, whenever

feasible, the optimal contract equates the investors’ marginal cost of delivering compensation

just before and after the productivity changes in that,

FV (K,V + Γ∗H , A
L) = FV (K,V,AH) , (27)

which is the FOC with respect to ΓH implied by (23). Note that the second-order condition

(SOC) is given by FV V (K,V + Γ∗H , A
L) < 0 which implies that F is concave in V at Γ∗H .

However, (27) only holds when neither the entrepreneur’s limited-commitment constraint

nor the investor’s limited-liability constraint binds. When either constraint binds, we will
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have inequalities rather than equalities for the FOC with respect to ΓH . We will later return

to the corner-solution case with more detailed discussions.

Next we turn to the boundary conditions where either the entrepreneur’s limited-commitment

constraint or the investors’ limited liability constraint binds.

The boundary conditions. Consider the two-sided commitment problem. First, we

consider the endogenous right boundary condition which arises from the investor’s limited-

liability considerations. Let V n(K) denote the entrepreneur’s time-t state-n promised utility

such that the investor’s limited-liability condition is met and hence will not voluntarily walk

away. That is, in state n, V n(K) satisfies

F (K,V n(K), An) = 0 , (28)

which gives the upper endogenous boundary condition.

Now, we turn to the left boundary condition that arises from the entrepreneur’s dynamic

participation constraint. At that endogenously determined boundary, the entrepreneur is

indifferent between staying within the long-term relationship with the investor and walking

away with the outside option.

As the entrepreneur has an outside option to divert a fixed fraction α (0 < α < 1) of

the firm’s capital and set up a new firm under an optimal long-term contract afresh with

no liability, as sketched out in Section 2, we have an endogenous lower boundary for the

entrepreneur’s promised utility V . What is the entrepreneur’s value function by following

the deviation (diversion) strategy? The entrepreneur evaluates his consumption under a new

optimal contract (with essentially the same term) but with zero liability (i.e. F = 0) and

only α fraction of the firm’s current capital stock. Therefore, the entrepreneur’s outside

option value V̂n(Kt) in state n should be given by V n( · ), the entrepreneur’s value function

under zero liability, but only with αKt, in that

V̂n(Kt) = V n(αKt) , (29)

where V n( · ) is given by (60).
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In summary, with the entrepreneur’s limited commitment and the investor’s limited lia-

bility, the entrepreneur’s utility Vt must satisfy

V n(αKt) ≤ Vt ≤ V n(Kt). (30)

The HJB equation (23), the FOCs (24), (25), (26) and (27) as well as boundary conditions

jointly characterize the solution to the second-best optimal contract.

4.2 The Entrepreneurs’ Promised Certainty Equivalent Wealth W

How do we link the entrepreneur’s promised utility V , the key state variable characterizing

the optimal compensation to variables that are empirically measurable? As we will show,

the entrepreneur’s promised (certainty-equivalent) wealth W can be naturally mapped to the

firm’s liquidity holding. Before delving into financial implementation, we first summarize the

transformation from V to W .

As in the full-commitment first-best benchmark case, we may equivalently reformulate

the investor’s value function F (K,V,An) to one expressed in terms of K and W , which we

denote by P (K,W,An) as follows,

P (K,W,An) ≡ F (K,V,An) = F (K,U(bW ), An) , n ∈ {L, H}, (31)

where V (W ) = U(bW ) links the entrepreneur’s utility V with the promised wealth W .

By applying the Ito’s formula to P (K,W,An) and using (31), we obtain an HJB equation

for F (K,V,An) and also correspondingly FOCs for C, I, x, and the endogenous adjustments

of the entrepreneur’s promised certainty equivalent wealth, ΨH and ΨL, as the state of

productivity switches from H to L, and from L to H, respectively.

By exploiting our model’s homogeneity property, we may transform our PDE formula-

tion for P (K,W,A) into analytically tractable coupled ODE formulation for p(w,AH) and

p(w,AL), where the entrepreneur’s promised certainty equivalent wealth P (K,W,A) is ho-

mogeneous of degree one in K and W , in that

P (K,W,An) = pn(w)K ,n ∈ {L,H}, (32)
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where w = W/K is the entrepreneur’s W scaled by the firm’s capital stock K, and pn(w) is

the scaled investors’ value in state n ∈ {L,H}. The technical details for transformations are

provided in the Appendix.

5 Implementation: Liquidity and Risk Management

Having characterized the optimal contract via the entrepreneur’s promised wealth W , we

next implement the model’s predictions via commonly used financial instruments by posing

an entrepreneur’s optimization problem in an economic environment with these standard

securities. We emphasize that the original contracting problem yields identical outcomes

as the entrepreneur’s optimization problem that we will introduce next. Importantly, the

entrepreneur’s limited commitments and/or the investor’s limited liability naturally give rise

to the entrepreneur’s corporate risk management and liquidity management, implemented

via standard liquidity and derivative (e.g., futures) securities.10

Liquidity management. We first describe the entrepreneur’s liquidity management op-

portunity. We endow the entrepreneur with a bank/credit account. Let St denote this ac-

count’s time-t balance and naturally St < 0 corresponds to the case where the entrepreneur

is using the credit line from the bank. At each time t with productivity An, the entrepreneur

can borrow at the risk-free rate r up to a maximal value of Dn(Kt), which we refer to as

the endogenous debt capacity in state n. We show that Dn(Kt) is determined by the primal

contracting problem and is given by

Dn(K) = P (K,Wn, A
n) , n ∈ {L,H}, (33)

where P (K,Wn, A
n) is the investors’ value when the entrepreneur’s limited-commitment

constraint binds, i.e. when Wn = Wn. Intuitively, provided that the entrepreneur does not

walk away from the contract, the entrepreneur’s debt is then risk free and hence can be

financed at the risk-free rate.

10It is well known that implementation is not unique. We choose an intuitive one and will discuss alternative
ways of implementing the dynamic optimal contract.
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However, liquidity management via a risk-free savings/credit account is not state contin-

gent and thus has limited abilities for the entrepreneur to manage various risks. To replicate

the optimal contracting outcome, we need additional state-contingent instruments to allow

the entrepreneur to optimally manage the risk exposure.

Risk management against capital shocks. One way for the entrepreneur to manage the

capital risk Z is to use a standard risk management instrument such as futures.11 Consider

the futures contract written on capital shock Z. Because investors are risk neutral, there

is no premium to entering futures contract whose payoffs have zero mean. Suppose that a

unit of long position in futures gives the holder an exposure of σKdZt. With a size of φtKt

in the underlying futures, the entrepreneur’s total exposure is then φtKtσKdZt. As the

profits/losses of the futures position are only subject to diffusion shocks and instantaneously

credited/debited from the entrepreneur’s bank account, there is no default risk.

Insurance against productivity shocks. Finally, we propose an insurance contract that

allows the entrepreneur to hedge the stochastic change of the productivity state. Suppose

that the current state is H. An investor with a long position in the insurance contract pays

an insurance premium at the rate of λH but will receive a unit of payoff from the counter-

party if and only if the productivity state switches from H to L. As the investor is risk

neutral, the actuarially fair premium per unit of time for this insurance is indeed λH .

Let πH(S,AH)K denote the entrepreneur’s demand for this insurance contract in state

H. The entrepreneur thus pays a total insurance premium πH(S,AH)KλH per unit of time

and receives a lump-sum payment πH(S,AH)K if and only if the state switches from H to

L, i.e. when dNt = 1, but zero, otherwise. Therefore, the total stochastic exposure of this

insurance contract is πH(S,AH)Kt(dNt − λHdt) where dNt ∈ {1, 0}.

As the entrepreneur is risk averse, via the standard risk-sharing argument, we know that

the demand for both futures and insurance contracts are generally not zero. We will later

extend the model to allow for risk premium.

11Bolton, Chen, and Wang (2011) analyze the optimal corporate risk management for a financially con-
strained firm. In that model, they also analyze the dynamic futures trading strategies but their model is not
a dynamic contracting framework.
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Liquidity dynamics. After having presented the three financial instruments for our imple-

mentation, we now write down the dynamic evolution of the entrepreneur’s savings balance,

denoted by St. In state H, St evolves as follows,

dSt = (rSt + Yt − Ct)dt+ φtKtσKdZt + πH(S,AH)Kt(dNt − λHdt) , (34)

as long as the following credit constraint (35) is satisfied:

St ≥ −DH(Kt), (35)

where DH(Kt) > 0 is given by (33).

The first term in (34), rS + Y − C, is given by the sum of the interest income rS and

the investors’ business income Y − C. In the absence of risk management and insurance,

rS + Y −C is simply the rate at which the entrepreneur saves or draws on the line of credit

at the risk-free rate r. The second term φtKtσKdZt in (34) describes the effect of hedging

the capital shock Z via the futures position φK, and the last term πH(S,AH)Kt(dNt−λHdt)
captures the effect of the insurance contract against productivity changes.

The Entrepreneur’s Optimization Problem. We now summarize the implementation

problem. The entrepreneur optimally chooses consumption C, investment I, (scaled) futures

position φ and scaled insurance demand, πH and πL, to maximize utility given by (4)-(5)

subject to the liquidity accumulation dynamics (34) and the endogenous borrowing limit

(35), where Dn(K) is specified in (33).

Guided by economic insights under the full-commitment case, we express the entrepreneur’s

value function J(K,S,An) as follows,

J(K,S,An) =
(bM(K,S,An))1−γ

1− γ
, n = L,H . (36)

Here, M(K,S,An) can be interpreted as the entrepreneur’s certainty equivalent wealth and

the normalization constant b is given by (14). In the Appendix, we provide the details on

how to characterize M(K,S,An) via a PDE with corresponding boundary conditions.
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To simplify the exposition of the key economic mechanism in our model, we next analyze

the case with capital (diffusion) risk only, which is a special case with AL = AH = A.

6 The Diffusion-Only Case

In this section, we analyze the diffusion-only case by first summarizing the model’s solution

and then using the solution to analyze the model’s main implications and results. We mostly

focus on analyzing the implementation problem.

6.1 Solution

By exploiting our model’s homogeneity property, we may transform our PDE formulation

into analytically tractable ODE formulation. Specifically, we show that the entrepreneur’s

certainty equivalent wealth M(K,S) is homogeneous of degree one in K and S, in that

M(K,S) = m(s)K , (37)

where s = S/K is the entrepreneur’s savings S scaled by the firm’s capital stock K, and

m(s) is the scaled promised (certainty equivalent) wealth.12

The dynamic of scaled liquidity s. Given the consumption-capital ratio c(s), the

investment-capital ratio i(s), and the hedge ratio φ(s), in the interior region, we have

dst = µs(st)dt+ σs(st)dZt , (38)

where the drift and volatility processes µs( · ) and σs( · ) for s are given by

µs(s) = (A− i(s)− g(i(s))− c(s)) + (r + δ − i(s))s− σKσs(s), (39)

σs(s) = (φ(s)− s)σK . (40)

12Wang, Wang, and Yang (2012) solve an entrepreneur’s optimal consumption-savings, business invest-
ment, and portfolio choice problem with endogenous entry and exit decisions. By exploiting homogeneity,
they derive the optimal investment policy in a q-theoretic context with incomplete markets. In our model,
we optimally implement the solution of the optimal contacting problem.
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The one-sided limited-commitment case. The following proposition summarizes the

solution for the case with only the entrepreneur’s limited-commitment problem.

Proposition 2 In the region s > s, the entrepreneur’s scaled promised wealth m(s) solves:

0 = max
i(s)

m(s)

1− γ

[
γχ(m′(s))

γ−1
γ − ζ

]
− δm(s) + [(r + δ)s+ A]m′(s)

+i(s)(m(s)− (s+ 1)m′(s))− g(i(s))m′(s)− γσ2
K

2

m(s)2m′′(s)

m(s)m′′(s)− γm′(s)2
, (41)

subject to the following boundary conditions:

lim
s→∞

m(s) = qFB + s , (42)

m(s) = αm(0) , (43)

lim
s→s

σs(s) = 0 and lim
s→s

µs(s) ≥ 0 . (44)

The non-linear ODE given by (41) characterizes the entrepreneur’s scaled promised

wealth m(s) in the interior region s > s. We now turn to boundary conditions. First,

as the entrepreneur’s savings s approaches infinity (s → ∞), the entrepreneur’s self in-

surance is sufficient to achieve the first-best resource allocation outcome, and hence m(s)

approaches qFB + s, the sum of the Tobin’s q under the first-best benchmark and the value

of liquidity s. In this case, the marginal value of liquidity is simply unity as a financially

unconstrained entrepreneur does not pay a premium for liquid assets, and the entrepreneur

values per unit of capital K at its first-best maximal value qFB.

Next, we turn to the endogenous boundary s. Intuitively, at this boundary s, the en-

trepreneur’s promised wealth m(s) equals αm(0), as the entrepreneur’s certainty-equivalent

wealth is αm(0) per unit of capital by following the deviation strategy of diverting α fraction

of capital stock with zero liability. Additionally, how do we ensure that the entrepreneur does

not default on debt as s approaches s? We need to require that the volatility of s evaluated

at s must be zero, as stated in (44), and moreover, the drift µs(s) should be weakly positive

to ensure that the constraint s ≥ s is satisfied at all times. These two conditions can be

understood via reasoning by contradiction. First, consider the zero volatility condition at

s = s. Suppose lims→s σ
s(s) 6= 0, then for values of s that are very close to the boundary
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s, the possibility of crossing the boundary s is strictly positive (as the volatility effect dom-

inates the drift effect in diffusion) violating the constraint s ≥ s. Additionally, we also have

to rule out a deterministic violation of s ≥ s, which will occur with a negative drift µs( · ) at

s even when the volatility at s is zero. Thus, we also need µs(s) ≥ 0.

The two-sided limited-commitment case. What if the investor also faces the limited

liability constraint? For this two-sided limited commitment problem, we simply need to

modify conditions at the the upper boundary in Proposition 2. First, we note that the

investor’s limited liability implies that the upper boundary is s = 0 rather than the natural

limiting boundary s → ∞ for the one-sided limited-commitment case. We thus replace

condition (42) with the following conditions at the new upper boundary s = 0:

lim
s→0

σs(s) = 0 and lim
s→0

µs(s) ≤ 0 . (45)

The arguments for (45) are essentially the same as those we have laid out earlier for the

lower boundary s. Intuitively, at the upper boundary s = 0, the volatility σs( · ) has to be

zero and the drift needs to be weakly negative to pull s to the interior ensuring that s will

not violate the constraint s ≤ 0.

6.2 Parameter choices and calibration

Our diffusion model is parsimonious with only eight parameters. Three parameters essential

for the contracting tradeoff between risk sharing and limited enforcement are risk aversion

γ, volatility σK , and the diversion parameter α. Other five parameters (e.g., the risk-

free rate r, the entrepreneur’s discount rate ζ, depreciation rate δ, adjustment cost θ, and

productivity A) are also critical to make the model fully dynamic and operational but in a

simplest setting. We choose sensible parameter values to highlight the model’s mechanism

and main insights. Also, we provide a first-pass assessment on the quantitative importance

of limited-commitment and limited-liability frictions.

We choose the widely used value for the coefficient of relative risk aversion, γ = 2. The

annual risk-free interest rate is r = 5%. The entrepreneur’s annual subjective discount rate

is set to equal to the risk-free rate, ζ = r = 5%. Under the first-best setting, consumption
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then should be constant at all times.

On the real investment side, we rely on the findings of Eberly, Rebelo, and Vincent (2009)

who provide empirical evidence in support of Hayashi (1982). Following their work, we set

the annual productivity A = 20% and the annual volatility of productivity shocks σ = 20%.

While our model is equally tractable for any homogeneous adjustment cost function g(i),

we choose the following quadratic adjustment cost function for illustrational simplicity,

g (i) =
θi2

2
, (46)

where the parameter θ measures the degree of the adjustment cost.13 A higher value θ implies

a more costly adjustment process. For this case, we have explicit formulas for Tobin’s q and

the optimal investment-capital ratio i in the first-best MM benchmark:

qFB = 1 + θiFB, and iFB = r + δ −
√

(r + δ)2 − 2
A− (r + δ)

θ
. (47)

Fitting the first-best values of qFB and iFB to the sample averages, we set the adjustment

cost parameter θ = 2 and the (expected) annual depreciation rate for capital stock as δ =

12.5%. These baseline parameters imply qFB = 1.2 and the annual investment-capital ratio

iFB = 0.1. We choose the fraction of capital stock that the entrepreneur may divert, α to be

0.4, broadly in line with empirical estimates.14 The parameter values for our baseline case

are summarized in Table 1. Note that all parameter values are annualized when applicable.

13Jermann (1998) proposes an isoelastic nomothetic adjustment cost and argue that the curvature of the
adjustment cost is critical in equilibrium models.

14See Li, Whited, and Wu (2014) for the empirical estimates of α. The averages are 1.2 for Tobin’s q and
0.1 for the investment-capital ratio, respectively, for the sample used by Eberly, Rebelo, and Vincent (2009).
The imputed value for the adjustment cost parameter θ is 2 broadly in the range of estimates used in the
literature. See Whited (1992), Hall (2004), Riddick and Whited (2009), and Eberly, Rebelo, and Vincent
(2009).
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Table 1: Summary of Parameters

This table summarizes the parameter values for the baseline model with AH = AL.

Parameters Symbol Value

Risk-free rate r 5%
The entrepreneur’s discount rate ζ 5%
The entrepreneur’s relative risk Aversion γ 2
Capital depreciation rate δ 12.5%
Volatility of capital depreciation shock σK 20%
Quadratic adjustment cost parameter θ 2
Firm’s productivity A 20%
Diversion parameter α 40%

6.3 Promised Wealth W and Financial Slack S

As we have noted, the contracting problem and the implementation formulation are equiva-

lent.15 The liquidity variables in the two formulations are related to each other as follows:

s = −p(w) and w = m(s) , (48)

where p(w) is the scaled investors’ value as a function of promised scaled wealth w in the

contracting problem and m(s) is the entrepreneur’s scaled certainty equivalent wealth as a

function of scaled liquidity s. Importantly, (48) implies that the composition of −p and m,

denoted by −p ◦m, yields the identity function, i.e. −p(m(s)) = s.

Scaled promised wealth w and scaled investors’ value p(w). Figure 1 plots the

investor’s scaled value p (w) and the sensitivity p′ (w) = PW in Panels A and B, respectively.

Note that p(w) is decreasing in w for both the one-sided and two-sided limited-commitment

cases. Intuitively, the higher the entrepreneur’s promised certainty equivalent wealth w, the

lower the investors’ value p(w). Moreover, as w increases, the entrepreneur becomes less

constrained and the marginal value p′(w) decreases.

15In the Appendix , we show that the ODE for p(w) and the ODE (41) for m(s) are equivalent. Of course,
additionally, the boundary conditions and policy rules for the two formulations are also matched.
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Figure 1: Investors’ scaled value p(w) and the investors’ marginal value of w, p′(w),
as functions of the entrepreneur’s scaled promised wealth w. The solid and dashed
lines correspond to the one-sided and two-sided limited-commitment cases, respectively. For
both cases, p(w) is decreasing and concave in w. For the one-sided case, w ≥ w = 0.479.
For the two-sided case, 0.4 = w ≤ w ≤ w = 0.988. The dotted line depicts the first-best
MM results: p(w) = qFB − w and the sensitivity p′(w) = −1.

For the one-sided limited-commitment problem (by the entrepreneur), as w → ∞, p(w)

approaches qFB − w and p′(w) → −1, the first-best MM benchmark result as in Hayashi

(1982). Importantly, the entrepreneur’s inability to fully commit not to walk away ex post

puts a lower bound w for w. In our numerical example, w ≥ w = 0.479.

For the two-sided limited-commitment case, w lies between w = 0.40 and w = 0.988.

The upper boundary w is determined by p(w) = 0 as the entrepreneur will face zero liability

after following the deviation strategy by diverting α fraction of capital stock. Interestingly,

the left boundary for the two-sided case, w = 0.40, is lower than that for the one-sided case,

w = 0.479. Intuitively, the additional constraint due to the investors’ limited liability not

only restricts the support of w to be lower than w = 0.988, but also shifts the left boundary

w further to the left from 0.479 for the one-sided case to 0.40, as the entrepreneur’s outside

opportunity (by following the deviation strategy) is now also less attractive.

While p′(w) ≥ −1 holds for the one-sided case, p′(w) can be less than −1 for the two-

sided case due to the fact the benefit for an entrepreneur from an increase of w may not be

sufficient to offset the cost to the investor (due to the increased likelihood that the investors’
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limited liability constraint may bind in the future) implying p′(w) + 1 < 0.

It is worth noting that despite being risk neutral, the investor effectively behaves in a risk-

averse manner due to the entrepreneur’s limited enforcement and/or the investors’ limited

liability, as we see from the concavity of the investors’ scaled value p(w). This concavity

property is critical in our agency model and fundamentally differentiates our model from the

neoclassical Hayashi (1982) result where volatility has no effect on firm value.

Figure 2: The entrepreneur’s scaled certainty equivalent wealth m(s) and marginal
(certainty equivalent) wealth of s, m′(s), as functions of scaled liquidity s. The
solid and dashed lines correspond to the one-sided and two-sided limited-commitment cases,
respectively. For both cases, m(s) is increasing and concave. For the one-sided case, s ≥=
−d = s = −0.692. For the two-sided case, −0.738 = −d = s ≤ s ≤ 0. The dotted line
depicts the first-best MM results: m(s) = qFB + s and the sensitivity m′(s) = 1.
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Next, we provide an intuitive implementation of our contracting problem by expressing

the entrepreneur’s scaled promised certainty equivalent wealth w as m(s), a function in the

entrepreneur’s liquidity s, in that w = m(s).

Scaled liquidity s and the entrepreneur’s scaled certainty-equivalent wealth m(s).

Figure 2 plots m(s) and the marginal value m′(s) in Panels A and B, respectively. Note that

m(s) is increasing in s for both the one-sided and two-sided limited-commitment cases.

Intuitively, the higher the value of liquidity s, the less likely that the entrepreneur will

walk away and hence the higher the value of m(s) in the long-term bilateral relationship.
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Moreover, as s increases, the entrepreneur becomes less constrained and the marginal value

m′(s) decreases.

For the one-sided limited-commitment case (by the entrepreneur), as s → ∞, the en-

trepreneur’s scaled (certainty equivalent) wealth approaches qFB + s and m′(s) → 1, the

first-best MM benchmark result as in Hayashi (1982).16 Importantly, the entrepreneur’s

inability to fully commit not to walk away ex post puts a lower bound s for s. How much

risk-free debt can the entrepreneur borrow without defaulting on the liability? We refer to the

maximal amount of risk-free debt that the entrepreneur can borrow also as the endogenous

risk-free debt capacity, denoted by d = D(K)/K. In our numerical example, debt is risk-free

provided that s > −d = −0.692. Intuitively, the entrepreneur can owe the investors up to

p(w), the investors’ value when the entrepreneur’s participation constraint binds. Hence, the

maximal amount of debt, i.e. the debt capacity satisfies d = p(w).

For the two-sided limited-commitment case, s lies between s = −0.738 and s = 0, which

implies that the entrepreneur will be able to borrow up to d = 0.738 but will not have any

savings in this implementation. The upper boundary is s = 0. If s > 0, the investors’ value is

strictly negative violating the investors’ limited-liability condition. Interestingly, the lower

boundary for the two-sided case, s = −d = −0.738, is to the left of the lower boundary

for the one-sided case, s = −d = −0.692. Intuitively, the additional constraint due to

investors’ limited-liability condition limits the entrepreneur’s self savings capacity, which

in turn increases the entrepreneur’s demand of using credit line, an alternative liquidity

instrument causing an increase of the firm’s debt capacity d from 0.692 to 0.738. This is

another example of understanding the rich implications of endogeneity. Here, a firm with a

larger debt capacity is not necessarily less constrained and may have a lower value.

While m′(s) ≥ 1 holds for the one-sided case, m′(s) can be less than 1 for the two-sided

case. This is again due to the fact that in the two-sided case the benefit of relaxing financial

constraints for the entrepreneur from an increase of s may not be sufficient to offset the cost

to the investor (due to a shorter distance investors’ limited-liability constraint) implying

m′(s) < 1 in the region −0.708 < s ≤ 0. We next analyze the optimal policy rules.

16See Wang, Wang, and Yang (2012) for similar conditions in a model with exogenously-specified
incomplete-markets model of entrepreneurship.
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6.4 Investment, Consumption, Liquidity and Risk Management

We first analyze the firm’s investment decisions, then the entrepreneur’s consumption, and

finally corporate liquidity and risk management decisions.

6.4.1 Investment, marginal q, and marginal value of liquidity m′(s).

We may simplify the FOC for investment as follows,

1 + g′(i(s)) =
JK
JS

=
MK

MS

=
m(s)− sm′(s)

m′(s)
. (49)

where the first equality is the investment FOC, the second equality follows from the value

function given by (36), and the last equality follows from the homogeneity property of M in

K and S. First recall the first-best MM benchmark result. Under perfect capital markets,

the entrepreneur’s certainty equivalent wealth M(K,S) = m(s)K = (qFB + s)K and the

marginal value of liquidity MS = 1 at all times. Hence, (49) specializes to the Hayashi’s

condition, where the marginal cost of investing 1 + θi(s) equals the marginal q.

With limited commitment frictions, MS 6= 1 in general and the FOC (49) then states that

the marginal cost of investing (on the left side) equals the ratio between (a) the marginal q,

measured by MK , and (b) the marginal value of liquidity measured by MS. While financing

does not matter in the standard q theory of investment under perfect capital markets, here

financing is costly and we use MS to measure the (endogenous) marginal cost of financing

in our generalized q theory of investment where markets are endogenously incomplete.

Figure 3 demonstrates the effects of limited commitments on marginal q and optimal

investment i(s). The dotted lines in Panels A and B of Figure 3 give the first-best qFB = 1.2

and iFB = 0.1, respectively. For the one-sided limited-commitment case, the investment-

capital ratio i(s) is lower the first-best benchmark value, iFB = 0.1 for all s and increases

from 0.02 to iFB = 0.1, as we increase s from the left boundary s = −0.692 towards ∞.

This is a standard result that increasing liquidity mitigates the severity of under-investment

(compared with the first-best benchmark level) by a financially constrained firm.

However, surprisingly, marginal q, MK , decreases in s from 1.43 to 1.197 in the credit

region s < 0. What is the intuition? When the firm is financing its investment via credit
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on the margin (i.e., S < 0), increasing K moves a negative-valued s closer to the origin

thus mitigating financial constraints, which is an additional benefit of accumulating K.

Technically, this result follows from dMK/ds = −sm′′(s) < 0 when s < 0 and if m(s) is

concave.

But why does a high marginal-q firm invest less in the credit region s < 0? And how do

we reconcile an increasing investment function i(s) with a decreasing marginal q function,

MK = m(s) − sm′(s) in the credit region s < 0? It is because in the credit region s < 0,

a high marginal-q firm also faces a high financing cost. In our case, marginal q and the

marginal financing cost are perfectly correlated. And investment is determined by the ratio

between marginal q and marginal financing cost as we have noted. For example, at the left

boundary s = −d = −0.692, marginal q is 1.43 and the marginal value of liquidity, m′(s),

is 1.38 both of which are high. However, together they imply i(−0.692) = 0.02, which is a

very low compared with the first-best iFB = 0.10.
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Figure 3: Marginal q, MK = m(s)−sm′(s), and the investment-capital ratio i(s). The
solid and dashed lines correspond to the one-sided and two-sided limited-commitment cases,
respectively. For the one-sided case, the firm always under-invests and i(s) increases with s.
For the two-sided case, the firm may either under-invest or over-invest. For −0.591 < s ≤ 0,
the firm over invests due to the investors’ limited-liability condition. The dotted line depicts
the first-best MM results where MK = qFB = 1.2 and the investment-capital ratio i(s) =
iFB = 0.1.

For space considerations, we do not elaborate on the properties of marginal q, MK , and

marginal value of liquidity, and investment in the cash region s > 0. In that region, MK and
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m′(s) are negatively correlated, different from the positive correlation in the credit region.17

Next, we turn to the two-sided case. First, the entrepreneur cannot own the whole equity

of the productive asset and also has positive liquid wealth; Otherwise, the investors’ value

would be strictly negative violating the limited-lability condition. Hence, there is only credit

region for the two-sided case: s ≤ 0.

Second, the firm may either under-invest or over-invest compared with the first-best

benchmark. In our numerical example, the firm under-invests when s < −0.591 but over-

invests when −0.591 < s ≤ 0. Intuitively, whether the first under-invests or over-invests

depends on the net effects from the entrepreneur’s limited-commitment and the investors’

limited-liability constraints. For sufficiently low values of s (e.g., deep in debt), the en-

trepreneur’s participation constraint matters more and hence the firm under-invests as it

does in the one-sided case. However, for sufficiently high values of s (bearing little debt

and being close to the origin), the investors’ value is close to zero and hence the investors’

limited-liability constraint has a stronger influence on investment. In order to make sure

that s will drift back into the credit region, the entrepreneur needs to “save” in the illiquid

productive asset by increasing K and borrowing more. By over-investing, the firm optimally

manages to keep s between −d and 0. The fact that we observe firms’ excessive invest-

ment near bankruptcy (when investors’ equity is barely positive) may not indicate that the

firm is engaging in excessive risk taking but simply to meet the investors’ limited-liability

constraint.

Having analyzed the firm’s investment, we next turn to the entrepreneur’s consumption.

6.4.2 Consumption

The entrepreneur’s optimal consumption rule c(s) is given by

c(s) = χm′(s)−1/γm(s) , (50)

where χ is the MPC (as in Ramsey) given by (16). Figure 4 plots the optimal consumption-

capital ratio c(s), and the MPC c′(s) in Panels A and B, respectively.

17See Bolton, Chen, and Wang (2011) for discussions on how cash and credit influence the behaviors of
investment, marginal q, and marginal value of liquidity.
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Figure 4: Consumption-capital ratio c(s) and the MPC c′(s). The solid and dashed
lines correspond to the one-sided and two-sided limited-commitment cases, respectively. For
the one-sided case, the entrepreneur always under-consumes and c(s) increases with s. For
the two-sided case, the entrepreneur may either under-consume or over-consume. In our two-
sided example, for −0.131 < s ≤ 0, the entrepreneur over-consumes due to the investors’
limited-liability condition. The dotted line depicts the first-best permanent-income results:
c(s) = χ(s+ qFB) and MPC c′(s) = χ = 5%.

For both one-sided and two-sided limited-commitment cases, the higher the value of

liquidity s, the higher the entrepreneur’s consumption, i.e., c(s) is increasing in s, as seen in

the figure.

For the one-sided limited-commitment case, as s → ∞, m(s) → qFB + s, the marginal

value of liquidity m′(s) → 1, and therefore c(s) → χ
(
qFB + s

)
, the permanent-income

benchmark result. For finite values of liquidity, i.e., −d ≤ s <∞, consumption c(s) is strictly

below the first-best permanent-income benchmark (see the dotted line), as we see from

Panel A. The MPC c′(s) decreases significantly with s and approaches the permanent-income

benchmark χ = 5% as we increase s → ∞. That is, financially constrained entrepreneurs

deep in debt (i.e., s being close to −d) have MPCs that are substantially higher than the

permanent-come benchmark. For the one-sided case, the consumption function induced by

the limited enforcement friction is concave, which is consistent with the concave consumption

function in standard exogenously-specified incomplete-markets environments.

For the two-sided limited-commitment case, the entrepreneur’s consumption can be ei-
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ther below or above the first-best benchmark consumption rule. In our numerical exam-

ple, compared with the permanent-income benchmark, the entrepreneur under-consumes for

s < −0.131 but over-consumes for −0.131 < s ≤ 0. At s = 0, c(0) = 6.41%, which is greater

than cFB(0) = χqFB = 6%.

Intuitively, whether the entrepreneur under-consumes or over-consumes depends on the

net effects from the entrepreneur’s limited-commitment and the investors’ limited-liability

constraints. Intuitively, for sufficiently low values of s (e.g., deep in debt), the entrepreneur’s

participation constraint matters more and hence the entrepreneur under-consumes in order

to build up s as the entrepreneur does in the one-sided limited-commitment case. However,

for sufficiently high values of s (bearing little debt and being close to the origin) the investors’

value is close to be zero and hence the investors’ limited-liability constraint has a stronger

influence on the entrepreneur’s consumption. In order to make sure that s will drift back into

the credit region, the entrepreneur needs a high consumption rate to lower the rate of paying

down the credit line. By over-consuming for sufficiently high s, the entrepreneur optimally

manages to keep s between −d and 0. Also note that the MPC c′(s) is not monotonic in

liquidity s due to the interactions between the entrepreneur’s limited commitment and the

investors’ limited-liability condition.

Next we turn to the firm’s optimal financial policies.

6.4.3 Hedging via Futures

Before we delve into the details of corporate liquidity and risk management, we first review

the entrepreneur’s total wealth portfolio which consists of three parts: (1) a 100% equity in

the underlying business; (2) a zero-value mark-to-market futures position; and (3) a liquidity

asset holding in the amount of s (possibly negative in which case means borrowing.)

The entrepreneur’s optimal futures position φ(s) is given by

φ(s) =
sm′′(s)m(s) + γm′(s)(m(s)− sm′(s))

m(s)m′′(s)− γm′(s)2
. (51)

By construction, the only liquid risky asset in this implementation is futures, which is marked

to market and has zero market value at all times, therefore, all corporate liquidity s must
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be held in the risk-free asset. (When s < 0, liquidity refers to the credit borrowed by the

entrepreneur from the investors.)

Figure 5 plots the futures position φ(s). First, we note that under the first-best MM

benchmark, the entrepreneur is fully insured from the capital shock by taking a short futures

position with a short position, φ(s) = −qFB = −1.2. See the dotted line for the first-best

complete hedging results for the entrepreneur with φ(s) = −qFB = −1.2 in Figure 5.
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Figure 5: Futures hedging position φ(s) and savings s. The solid and dashed lines
correspond to the one-sided and two-sided limited-commitment cases, respectively. For both
cases, the entrepreneur takes a short position in the futures to partially hedge the equity
exposure to the underlying business, in that φ(s) < 0. For the one-sided case, interestingly,
the total exposure |φ(s)| increases with s. For the two-sided case, |φ(s)| is non-monotonic in
s due to the interaction between the entrepreneur’s limited-commitment constraint and the
investors’ limited-liability condition. The dotted line depicts the first-best complete hedging
results for the entrepreneur with φ(s) = −qFB = −1.2.

For both limited-commitment cases, the entrepreneur takes a short position in the futures

to partially hedge the equity exposure to the underlying business, in that φ(s) < 0. How

does |φ(s)| depend on s? For the one-sided limited-commitment case, as the firm becomes

less constrained (i.e. as s increases), the entrepreneur increases the (absolute) size of the

futures hedging position measured by |φ(s)|. That is, less financially constrained firms hedge
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more (after controlling for firm size) and in the limit as s → ∞, the entrepreneur can fully

diversity the idiosyncratic business risk by taking a short futures position with a size of

−qFB = −1.2 achieving the first-best MM benchmark. Rampini, Sufi, and Viswanathan

(2013) document less constrained firms hedge more.

For the two-sided limited-commitment case, the entrepreneur’s futures hedging position

|φ(s)| is non-monotonic in s where s lies between s = −0.738 and s = 0. By requiring

σs(s) = 0 at both boundaries s = −0.738 and 0, we have φ(s) = s = −0.738 and φ(0) = 0 by

using (40). Therefore, the firm optimally chooses not to hedge at s = 0 as it fully pays back all

its credit. Note that the maximal amount of hedge is |φ| = 1.137 at s = −0.408. Intuitively,

in the two-sided limited-commitment case, the maximal hedge occurs at an interior value of

s as the entrepreneur minimizes the total costs of financial frictions due to the entrepreneur’s

limited-commitment and the investors’ limited-liability frictions.

One general take-away message from this comparative analysis between the one-sided

and two-sided limited-commitment cases is that the investors’ limited-liability constraint

can have important implications that are very different from and sometimes opposite to

those implied by the entrepreneur’s limited-commitment constraint.

6.5 Risk Management via Shorting Stocks: An Alternative

Next, we provide an alternative implementation achieving the same resource allocation as

the previous implementation (based on the bank savings/credit account and futures) does.

However, this implementation has very different implications on debt capacity.

For the new implementation, we introduce a risky liquid financial asset that is perfectly

correlated with the shock Z for capital accumulation (1) so that the entrepreneur can choose

how much capital shock Z to hedge. Let dRt denote the incremental return for this risky

asset over time period (t, t + dt). Because investors are risk neutral, by using the standard

equilibrium argument, we may write down dRt as follows,

dRt = rdt+ σKdZt . (52)

Without loss of generality, we choose the volatility of this new risky asset to be σK . By
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setting the volatility of this risky asset to equal to the volatility of capital accumulation

process, we essentially are requiring a unit short position in the risky asset provides an

instantaneous perfect hedging against capital accumulation risk.

Let Ωt denote the entrepreneur’s investment in this new risky asset, and hence the re-

maining liquid wealth, St−Ωt, is invested in the entrepreneur’s savings account earning the

risk-free asset r. Because the entrepreneur can costlessly and continuously rebalance between

this new publicly traded risky asset and the risk-free asset, we may write the evolution for

the entrepreneur’s total liquid wealth St as follows,

dSt = (r(St − Ωt) + Yt − Ct)dt+ Ωt(rdt+ σKdZt)

= (rSt + Yt − Ct)dt+ ΩtσKdZt . (53)

By comparing (53) with (34) (and ignoring the jump part in (34)), it is straightforward to

conclude that the stock’s position ω(s) = Ω/K in this new implementation is the same as

the futures position φ(s) in the previous implementation, i.e. ω(s) = φ(s). Unlike futures,

the entrepreneur collects the short-sale proceeds, −Ω, and invests the net proceeds S − Ω

(after paying down the credit usage amount) in the savings account earning interests at the

risk-free rate r.

Figure 6 plots the hedging position via the risky liquid asset ω(s) and the amount of

risk-free asset holdings, s−ω(s), which earns interests at the risk-free rate r in Panels A and

B, respectively. First, as we have noted, the risky asset position is the same as the futures

hedging position, i.e. ω(s) = φ(s) because the risky asset and futures (on the risky asset)

have the same risk exposures σKdZ. As for the futures, the entrepreneur needs to take a

short position in the risky asset whose return is given by (52) in order to partially manage

the risk exposure to the underlying illiquid business project.

While the savings amount under the futures hedging is simply s, the scaled savings

amount in this new implementation equals s − ω(s) 6= s as shorting ω(s) shares of stocks

(per unit of capital) generate a sales proceed in the amount of −ω(s) > 0. Panel B of Figure

6 shows that for both cases, the entrepreneur stochastically saves, i.e., s − ω(s) > 0. For

the one-sided case, scaled savings s − ω(s) increases from zero to s + qFB in the limit as

we increase liquidity s from −0.692 towards ∞. For the two-sided case, risk-free savings
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Figure 6: Optimal hedge via the risky asset ω(s) and savings s−ω(s). The solid and
dashed lines correspond to the one-sided and two-sided limited-commitment cases, respec-
tively. For both cases, the entrepreneur takes a short position in the risky liquid asset to
partially hedge the equity exposure to the underlying business, in that ω(s) < 0, and holds a
risk-free savings account with (weakly) positive balances at all times. For the one-sided case,
interestingly, the total size of the “short” position |ω(s)| increases with s. For the two-sided
case, |ω(s)| is non-monotonic in s due to the interaction between the entrepreneur’s limited-
commitment constraint and the investors’ limited-liability condition. The dotted line depicts
the first-best MM results: ω(s) = −qFB = −1.2 and savings s+ qFB.

s − ω(s) is non-monotonic. At both left and right boundaries s = s = −0.738 and s = 0,

liquid savings s − ω(s) = 0 equal zero, which follows from the requirement that volatility

σs(s) = −(s−ω(s))σK at the boundaries must be zero. In the interior region −0.738 < s < 0,

the savings amount, s− ω(s), first increases and then decreases with s essentially inversely

tracking the non-monotonicity of the hedge ratio ω(s).

While using different securities, the two implementations share two key features in com-

mon: (1) the total corporate liquidity summarized by s and (2) the total amount of risk

exposures.
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7 Alternative Specifications of Outside Options for In-

vestors and Entrepreneur

The critical assumptions of our framework are (i) the inalienability of human capital and (ii)

the investors’ inability to fund the operating losses indefinitely. For expositional simplicity,

the specific constraints we have chosen are (i) the entrepreneur’s ability to divert α fraction

of capital and start a new firm and (ii) the limited-liability constraint for investors at all

times. However, it is important to note that our model’s main results and key insights hold

under much broader settings. We next consider (i) an alternative specification that will pin

down the entrepreneur’s outside option and (ii) one important generalization on investors’

limited-liability constraint along the line of Hart and Moore (1994).

7.1 Autarky as the Entrepreneur’s Outside Option

Model setup. Now we provide an alternative interpretation for the entrepreneur’s out-

side option based on the cost of losing intertemporal consumption-smoothing opportunities.

Instead of assuming that the entrepreneur can divert α fraction of capital stock and start

afresh, we assume that the entrepreneur always has an option to freely walk away from the

investors. However, by doing so, the entrepreneur will permanently lose all future borrowing,

saving, and insurance possibilities by remaining in autarky, as assumed in Bulow and Rogoff

(1989) and the follow-up international macro literature.

Let Ĵ(Kt) denote the entrepreneur’s value function under autarky defined as follows,

Ĵ(Kt) = max
I

Et
[∫ ∞

t

ζe−ζ(v−t)U(Yv)dv

]
, (54)

where the entrepreneur’s consumption is given by Ct = Yt = AtKt − It −Gt. The following

proposition summarizes the entrepreneur’s value function Ĵ(K) and the certainty equivalent

wealth M̂(K) under autarky for the pure diffusion case.18

18See the Appendix for technical details.
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Figure 7: The case with autarky as the entrepreneur’s outside option. Panels A, B,
C, and D plot the entrepreneur’s scaled certainty equivalent wealth m(s), marginal (certainty
equivalent) wealth of s, m′(s), the investment-capital ratio i(s), and optimal hedge via the
risky asset ω(s), as functions of scaled liquidity s, respectively. The solid and dashed lines
correspond to the one-sided and two-sided limited-commitment cases, respectively. For both
cases, m(s) is increasing and concave. For the one-sided case, s ≥ −0.764. For the two-sided
case, −0.720 ≤ s ≤ 0. The dotted line depicts the first-best MM results: m(s) = qFB+s, the
sensitivitym′(s) = 1, the investment-capital ratio i(s) = iFB = 0.1 and ω(s) = −qFB = −1.2.

Proposition 3 Under autarky, the entrepreneur’s value function Ĵ(K) is given by

Ĵ(K) =
(bM̂(K))1−γ

1− γ
, (55)

where b is given by (14) and M̂(K) is the entrepreneur’s certainty equivalent wealth given by

M̂(K) = m̂K , (56)
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where

m̂ =
(ζ(1 + g′(̂i))(A− î− g( î) )−γ)

1
1−γ

b
, (57)

and î is the optimal investment-capital ratio solving the following implicit equation:

ζ =
A− î− g(̂i)

1 + g′(̂i)
+ (̂i− δ)(1− γ)− σ2

Kγ(1− γ)

2
. (58)

By following essentially the same analysis in Section 6, we conclude that the lower bound-

ary s for liquidity s is determined by:

m(s) = m̂. (59)

Therefore, for both the one-sided and two-sided limited-commitment cases, we only need

to replace the previous boundary condition (43) in Proposition 2 with the new condition

boundary condition (59) and keep all the other conditions are kept unchanged. Intuitively,

the lower boundary s for this new case is determined solely by (59) independent of the upper

boundary s, which is very different from the benchmark specification where the entrepreneur

can divert α fraction of capital stock and start a new firm free of liability.

Analysis. Figure 7 plots the entrepreneur’s scaled certainty equivalent wealth m(s), the

marginal value of liquidity m′(s), optimal investment-capital ratio i(s), and optimal hedging

position (scaled stock position) ω(s) for both one-sided and two-sided limited-commitment

cases. The general patterns for all four variables remain valid. For example, for the one-sided

case, the firm always under-invests and the marginal value of liquidity m′(s) is always greater

than one. Additionally, the degree of underinvestment weakens and the marginal value of

liquidity m′(s) decreases, both of which eventually approach the first-best levels iFB = 0.10

and unity, respectively, as s→∞. Finally, the optimal hedge size, |φ(s)| also increases and

approaches the first-best level qFB for s→∞.
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7.2 Investors’ Alternative Use of Capital (Hart and Moore, 1994)

We now consider a more general specification for the investors’ outside option. Suppose that

investors’ alternative use of capital can yield a value of `Kt at any time t, where ` > 0 is a

constant. For example, investors may simply liquidate the asset in the market or hire a less

skilled manager delivering `K to investors. As a result, ex ante investors cannot credibly

commit to a long-term contract when investors’ value may fall below ` per unit of capital on

the equilibrium path effectively making the investors’ participation constraint even tighter.

Indeed, this latter case is the assumption on the investors’ side in Hart and Moore (1994).

Additionally, we could imagine that investors may be able to provide some personal

collateral ex ante for the entrepreneur in an escrow account that can be seized by the en-

trepreneur should investors walk away ex post from the long-term contract. By personally

pledging more capital in advance mitigates the investors’ incentives to walk away from the

optimal contract.

In the model, we simply need to modify the upper boundary condition as follows:

F (K,V (K)) ≥ `K , (60)

where K is the endogenous upper boundary. The case with ` > 0 corresponds to the Hart-

Moore framework where the investors have an alternative use of capital. For the case with

` < 0, we may interpret ` as the amount of personal guarantee offered by investors ex ante

in an escrow account that can be seized by the entrepreneur should the investors renege on

the contract.

8 Persistent Productivity Shocks: Insurance and De-

faultable Debt

In this section, we consider the model’s general case by allowing for persistent observable

shocks to the firm’s productivity. First, it is natural to assume that these productivity

shocks are observable and can be contracted on. Second, because these productivity shocks

are persistent naturally they will affect the firm’s investment even in the neoclassical setting
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as expected. We will show there is an additional interaction effect due to financing constraint

and persistent productivity shocks.19

We explore the interaction effect of persistent productivity shocks and the entrepreneur’s

limited commitment and the consequences for investment, consumption, managerial com-

pensation, and liquidity and risk management. As we will show, persistent productivity

shocks will naturally give rise to demand for insurance against the change of productivity.

Equivalently, we show that default on debt as productivity decreases from H to L can be a

natural equilibrium outcome.

We leave the solution for the optimal contracting problem to the Appendix and focus on

an intuitive financial implementation with commonly used securities.

8.1 Implementation: Liquidity and risk management

First, by using the homogeneity property, we write the entrepreneur’s certainty equivalent

wealth function in state n ∈ {L,H}, M(K,S,An), as follows,

M(K,S,An) = mn(s)K . (61)

The dynamic of scaled liquidity s. Given the state-contingent consumption-capital

ratio cn(s), the investment-capital ratio in(s), the hedge ratio φn(s) and the endogenous

adjustment size πn(s) of liquidity holding as productivity switches out of state n, we write

the dynamic of liquidity s in the interior region as follows,

dst = µsn(st)dt+ σsn(st)dZt + πn(s)dNt , (62)

where the drift and volatility processes µs( · ) and σs( · ) for s are given by

µsn(s) = (An − πn(s)λn − in(s)− g(in(s))− cn(s)) + (r + δ − in(s))s− σKσsn(s), (63)

σsn(s) = (φn(s)− s)σK . (64)

19See DeMarzo, Fishman, He, and Wang (2012) for a model of optimal investment in a q-theoretic context
with persistent shocks and agency frictions along the line of DeMarzo and Fishman (2007) and DeMarzo
and Sannikov (2006).
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Here, the last term in (62), πn(s)dNt, captures the effect of discrete productivity change on

scaled liquidity s. πn(s) is the scaled insurance position.

The one-sided limited-commitment case. The following proposition summarizes the

solution for the case with only the entrepreneur’s limited-commitment problem.

Proposition 4 In the region s > sH , the scaled value mH(s) in state H solves the following

ODEs,

0 = max
iH ;πH

mH(s)

1− γ

[
γχm′H(s)

γ−1
γ − ζ

]
− δmH(s) +

[
(r + δ)s+ AH − λHπH

]
m′H(s)

+iH(mH(s)− (s+ 1)m′H(s))− g(iH)m′H(s)− γσ2
K

2

mH(s)2m′′H(s)

mH(s)m′′H(s)− γm′H(s)2

+
λHmH(s)

1− γ

((
mL(s+ πH)

mH(s)

)1−γ

− 1

)
, (65)

subject to the following boundary conditions:

lim
s→∞

mH(s) = qFBH + s , (66)

mH(sH) = αmH(0) , (67)

lim
s→sH

σsH(s) = 0 and lim
s→sH

µsH(s) ≥ 0 . (68)

The underlying arguments are very similar to the ones for the pure-diffusion case.

The two-sided limited-commitment case. For this two-sided limited commitment

problem, we simply need to modify the condition at the the upper boundary in Proposi-

tion 4. Note that the upper boundary is s = 0 rather than the natural limiting boundary

s→∞ for the one-sided limited-commitment case. We thus replace condition (66) with the

following conditions at the new upper boundary s = 0 under state H:

lim
s→0

σsH(s) = 0 and lim
s→0

µsH(s) ≤ 0 . (69)

The arguments for (69) are essentially the same as those we have laid out earlier for the

pure-diffusion case.
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8.2 An Example

For illustration, we consider the simplest setting where the productivity jump from H to L

is permanent and irreversible, in that λL = 0. We set λH = 0.1 and choose the productivity

levels to be AL = 0.18 and AH = 0.2. And all the other parameter values remain the same

as those for the pure-diffusion case. Figure 8 plots the results. These results are broadly in

line with what we have shown earlier. Importantly, note that the lower boundary for state

H is to the left of that for state L, which makes intuitive sense, as the entrepreneur shall be

able to borrow more in a more productive state, ceteris paribus.
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Figure 8: The effect of firm’s persistent productivity shocks. Panels A, B, C, and D
plot the entrepreneur’s scaled certainty equivalent wealth mn(s), marginal (certainty equiv-
alent) wealth of s, m′n(s), the investment-capital ratio in(s), and optimal hedge via the risky
asset ωn(s), as functions of scaled liquidity s, respectively. Parameter values: AL = 0.18,
AH = 0.2, λL = 0, and λH = 0.1.

Panel A of Figure 9 plots the entrepreneur’s insurance demand πH(s) in state H against
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Figure 9: The insurance position (against the change of productivity from state
H to L) πH(s), and liquidity s+πH(s), as functions of scaled liquidity s. Parameter
values: AL = 0.18, AH = 0.2, λL = 0, and λH = 0.1.

the productivity change from state H to L. As we see for all levels of s, the entrepreneur

pays a positive but time-varying insurance premium λHπH(s) per unit of time in state H

to investors in order to receive a lump-sum insurance payment in the amount of πH > 0

from investors at the moment when the productivity state switches from H to L. By doing

so, the entrepreneur equates the marginal utility before and after the productivity changes

whenever feasible. Interestingly, the insurance demand πH(s) is non-monotonic in s as it first

increases in liquidity s and then decreases with s. The intuition is as follows. For a severely

constrained entrepreneur whose s is close to the left boundary s, the entrepreneur has limited

funds to purchase insurance. Therefore, insurance πH(s) increases as s moves towards the

origin turning less negative. As s becomes sufficiently close to the origin, the entrepreneur’s

demand for insurance decreases for the following reasons. First, the entrepreneurial firm has

more liquidity to self insurance and hence demand for additional liquidity decreases. Second,

the entrepreneur’s decreasing marginal utility also suggests that the entrepreneur’s demand

for insurance is decreases with liquidity, ceteris paribus. Additionally, the investors’ limited-

liability constraint requires πH(s) ≤ −s, which in turns truncates the insurance demand.

For these reasons, the insurance demand πH(s) is non-monotonic in liquidity s as shown in

Panel A of Figure 9.
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Panel B of Figure 9 plots the post-productivity-change liquidity level s + πH(s) imme-

diately following the change of productivity from state H to L. Note that s + πH(s) is

increasing in s, which makes intuitive sense. The higher the liquidity level in the current

state H, the higher the post-productivity-change liquidity level s+ πH(s) (ignoring the dif-

fusion part.) We have already commented that s+ πH(s) = 0 for sufficiently high level of s

because the demand for insurance reaches the constrained maximum level πH(s) = −s, as

s ≤ 0 is required in both states H and L due to the investors’ limited-liability condition. For

firms that are not much in debt (with s sufficiently close to the origin,) the firm has sufficient

liquidity and it is optimal to choose the constrained maximal insurance πH(s) = −s against

the stochastic productivity change.

9 Conclusion

Our generalization of Hart and Moore (1994) to introduce risky human capital and cash

flows, risk aversion of the entrepreneur, and ongoing consumption reveals the optimality

of corporate liquidity and risk management for financially constrained firms. Most of the

existing corporate security design literature has confined itself to showing that debt financing

and credit line commitments are optimal financial contracts. By adding risky human capital

and risk aversion for the entrepreneur, two natural assumptions, we show that corporate

hedging policies are also an integral part of an optimal financial contract. When productivity

shocks are persistent, we find that equilibrium default by the entrepreneur on his debt

obligations is part of an optimal contract.

We have thus shown that the inalienability of human capital constraint naturally gives rise

to a role for corporate liquidity and risk management, dimensions that are typically absent

from existing macroeconomic theories of investment under financial constraints following

Kiyotaki and Moore (1997).
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