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Abstract

To estimate the elasticity of intertemporal substitution (eis), one traditionally assumed time-additive utility

and constant relative risk aversion, but that model is often regarded as a failure as little or no link is detected

between expected real consumption growth and the real interest rate. We test whether the inverse of the eis is

really all that different from the rra estimates we get from eg equity markets, ie, whether time-additive utility

is really such a bad assumption. We find that by simple modifications of the basic model—namely, accounting

for seasonals and allowing for effects stemming from changes in wealth—produces elasticities that are quite

compatible with other studies, including values implied by the more reasonable range of risk-aversion estimates

obtained from capm tests. Our eis estimates are obtained from gmm, after unsuccessfully trying the standard

proxy for expected inflation. We also pool data from 24 countries, as single-country estimates are very imprecise

and erratic. Our attempt to reduce the time-aggregation problem in consumption data, lastly, is successful in

the sense that the resulting eis estimates are even higher.

Keywords: seasonality, inflation rate, instrumental variable, time aggregation, varying
relative risk aversion.
JEL-codes: G12, F43.



Estimating the Intertemporal Substitution Elasticity

Introduction

The Elasticity of Intertemporal Substitution (eis), a key parameter in macro-economics and

finance, measures the sensitivity of expected consumption growth to the real interest rate (ie

the expected real return on a nominally risk-free asset). In the case of time-additive utility the

eis coincides with relative risk tolerance, the inverse of the Arrow-Pratt measure of relative risk

aversion (rra); thus, under that assumption the eis can also provide an alternative estimate

of rra that does not rely on stock returns.

Assuming additive utility, eis or rra is a crucial parameter to determine the net effect

of higher expected future aggregate pay-offs on its present value. The watershed case, where

the opposing income and substitution effects1 cancel out exactly, corresponds to an rra of

unity; for values above unity higher expected growth sends the stock market down and vice

versa. Many economists would intuitively think that, given the level of current consumption,

a prospect of higher future consumption should increase its discounted value, implying that

the net outcome of income and substitution effects should be positive and rra, accordingly,

below unity. However, the rra estimated from financial markets is normally at least 3 in

unconditional tests of the CAPM, and much higher in conditional studies. One way to resolve

the conflict is to blame the stock market: expected returns on equity are too high (the equity

premium puzzle), possibly because of irrationality or perhaps because the observed returns

ignore various deadweight costs associated with investments or because the mean-variance

model that underlies many tests is otherwise flawed. Other ways out of the puzzle include

blaming the utility function: if utility is not additive over time, the close link between the eis

and the rra is severed. Attanasio and Weber (1989), Epstein and Zin (1989, 1991), Svensson

(1989) and many others since, propose approaches to separate the eis from the rra, but at

the cost of higher complexity. In this paper we want to test whether the inverse of the eis is

1The most obvious force is the income effect: there is, by assumption, a higher pay-off to discount, so that
at constant discount rates the present value rises. But there is an opposite force as well, a substitution effect:
to make agents accept a higher consumption growth, the discount rate must rise. In (log)normality models, also
an increased variance has similarly counteracting effects on the risk-adjusted expectation and on the discount
rate.
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really all that different from the rra estimates we get from the traditional equity literature,

ie, whether time-additive utility is really such a bad assumption. Thus, in the paper we adopt

time additivity as a working hypothesis, and we study eis-implied rra estimates. To get

these, we explore four avenues that might explain the often disappointingly low eis estimates

hitherto: (i) the treatment of expected inflation, an unobservable term in the real interest rate;

(ii) the assumption of Constant rra (crra), the workhorse model in this literature; (iii) the

data, which has predominantly been U.S.-based; and (iv) time aggregation: theoretically, the

90-day interest rate of eg April 1 should be linked to the growth between the consumption

levels on April 1 and July 1, not the aggregate consumption levels for the second and the third

quarter. In the remainder of this introduction we provide more details on these four aspects

of the paper, starting with the unobservability of expected inflation.2

In the past the unobservability of expected inflation has been handled via either surveys

or Instrumental Variable (iv) regressions. We first document that the standard proxy method

does not work, and then proceed with the Generalized Method of Moments (gmm). Specifically,

in the regression estimating the eis, a popular iv-like proxy for the expected real interest rate

can be obtained by assuming inflation to be a martingale, and accordingly substituting actual

inflation from the preceding period for the inflation expectation. Technically, this popular

proxy boils down to a pared-down two-stage least square (tsls) approach, using lagged inflation

as the sole instrument and by a priori fixing the coefficient of the first-stage regression at unity.

The method still introduces an errors-in-the-regressor bias if inflation is not a martingale,

but the method does avoid the inefficiency stemming from estimation error at the first-stage

regression of tsls. A perhaps better justification for the proxy method is that it represents

common practice in dailies and weeklies, where inflation over the past twelve months is almost

invariably substituted for expected inflation. In this paper, however, inflation is the three-

month percentage change of the price levels, for consistency with the quarterly consumption

data; and non-overlapping three-month inflation turns out to behave very differently from the

overlapping twelve-month figures we see published every month. For the developed countries,

three-month inflation even turns out to be negatively autocorrelated and strongly seasonal

rather than a unit-root process. For the emerging countries the martingale model is less

grossly violated, but the amount of momentum remains mild, at best. In most cases, including

2Another big issue, the presence of durable goods in the spending data, is not discussed. Empirical results
on the impact of durable goods are mixed; more practically, approximate adjustments for spending on durable
goods are available for few countries only.
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especially the emerging markets, the proxy method performs badly, generating negative eis

estimates. Much better inflation forecasts can be obtained using past inflation rates (four

lags) and interest rates. Using these instruments, gmm provides eis estimates that are all

significantly positive.

The second potential problem with conventional tests is the crra assumption. One reason

to doubt the validity of the model is that we observe strongly seasonal consumption growth,

rising sharply around year-end and slowing down afterwards; yet there is no similar pattern

in interest rates. One diagnosis, then, is that utility exhibits a seasonal that autonomously

modifies the consumption pattern without all of the changes in marginal utility that would

have followed if the utility function had been time invariant. Thus, in this view we spend so

much more around Christmas not because interest rates are sky high in quarter 3 and abysmal

in quarter 4, but because spending is exogenously more fun at that time. Stated differently,

interest rates do not need to move strongly because marginal utility does not fall despite the

higher spending. If this diagnosis is correct, the regular pattern of intertemporal substitution

may be obscured by the seasonality in marginal utility, ie the crra model is mis-specified.

Simple generalisations of the power utility model that can explain a seasonal in consumption

lead to a seasonally changing rra, which then dictates the addition of seasonal dummies in the

intercept and slope of our main regression. We find that the dummy intercepts are significantly

positive for growth between the third and fourth quarters, and negative in the fourth-to-first

quarter, reflecting a year-end effect. The model’s goodness-of-fit rises dramatically relative to

the standard gmm. The pattern persists if we also let the slopes share the same seasonal with

the intercepts, as the model suggests it should. Crucially, there also is a distinctly positive

effect on eis estimates.

Before moving on, we compare the above solution to the common way of dealing with

the seasonal: deseasonalize the data first, and hope that that’s all there is to it. But that

solution implies that our consumption variable becomes a constructed one. In addition, pre-

deseasonalisation would have largely destroyed the link between the seasonals in interest rates

and (especially) inflation. Thus, one advantage of our procedure is that the deseasonalisation

and the estimation of the eis are done in one step, with the significance tests and confidence

intervals fully taking into account the margin of error in the deseasonalisation, and allowing

the estimation to pick up any correlated parts in the two seasonals.

This finishes our discussion of seasonal variation in marginal utility. Another, more stan-

dard, generalization of the crra model is to allow rra to fall in wealth, that is, eis to rise
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with wealth. Under a generalized power function, where only wealth in excess of a threshold

produces utility,3 rra and eis will vary as wealth is changing; accordingly, in our tests we

allow risk tolerance to vary as a linear function of recent fluctuations in wealth, measured by

the local stock index’ deviation from its moving average (∆SI). Our findings support the

theory: the slope of the ∆SI is positive, suggesting that eis and risk tolerance increase with

wealth. The pattern can be combined with the seasonal.

This brings us to the third aspect of our paper. On the empirical front, the data scope is

extended from the U.S., the standard sample in earlier work, to an international panel of 24

countries, including both developed and emerging economies. For efficiency, we estimate the

equations via panels with a country-specific fixed effect and common values for the preference

parameters. One question that arises in this connection is the heterogeneity among the es-

timates of the individual series: pooled regressions are consistent with equation-by-equation

estimates only if the coefficients are identical across equations. Our purpose, however, is to

get some average estimate. According to Pesaran and Smith (1995), there are four procedures

that can be used to estimate an average effect: the mean group estimator (estimating sepa-

rate regressions for each group and averaging the coefficients over groups, as in LS), pooled

regression, aggregate time-series regressions and cross-section regressions on group means. In

the static case, where the regressors are strictly exogenous and the coefficients differ randomly

and are distributed independently of the regressors across groups, all four procedures provide

a consistent and unbiased estimate of the coefficient means (Zellner, 1969).

Fourth, we explore the impact of the time-aggregation problem. An interest rate refers to a

specific starting day and a specific end date, for instance February 15 and May 15, so ideally we

should have daily consumption data for exactly these dates. Quarterly consumption growth,

in contrast, compares one 90-day aggregate to another 90-day aggregate. This mismatch

between the regressee and regressors may weaken the relation between consumption growth

and the real rate, and then the eis is underestimated. To reduce the impact of the aggregation

problem, we propose to extract monthly data from the quarterly ones. Specifically, we assume

that consumption is changing smoothly, so that we can make informed guesses about the

distribution of consumption within the quarter by looking at consumption in the preceding

and next quarters. We then extract, for each quarter, the middle-month figure and use this

3In equilibrium, patterns in marginal indirect utility of wealth must mirror those in marginal indirect utility
of consumption.
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series instead of the three-month aggregates. We find that aggregation seems to systematically

reduce the estimated eis of the developed countries: the eis estimates are higher when the

data have been corrected. This is observed under all methods, equations and samples except

the emerging markets, but whether this is externally valid under all circumstances is of course

far from obvious.

Given the tentative nature of the correction of aggregation, the conclusions that follow are

based on regular data. Regarding the orders of magnitude of the rra implied by the eis, under

the time-additivity assumption, we find coefficients of about 5 for emerging markets, and 10

for developed economies if we adopt a gmm/crra model. Allowing for either the seasonal or

the changes in wealth always makes the implied rra estimate drop substantially. The final

estimate is around 2 for the full sample and for the emerging markets. For the continental

European group the rra estimates are even lower. These estimates are similar in magnitude

to those obtained from exchange rates and real consumptions by Apte et al (2005) or from

portfolio holdings data by Van Pée et al (2008). Thus, it seems that the equity puzzle may

indeed have something to do with the stock market, and not necessarily with the additivity or

non-additivity of utility over time.

1 The Models

The eis is defined as the sensitivity of expected real consumption growth relative to the real

interest rate, which in turn is defined as the expected real return on a nominally risk-free

deposit or bill. In the case of time-additive utility the eis coincides to the degree of risk

tolerance, the reciprocal of rra: after all, expected utility is additive over states already, so

when we make lifetime expected utility also additive across periods, consumption variability

across states affects lifetime expected utility in the same way as variability over time. In

this section we discuss the modeling issues that motivate our regressions. We first review

the standard test equation, then present the arguments for including equity data and sesonal

dummies into the regression, and conclude with a proposed partial solution for the aggregation

issue in the consumption data.

1.1 The standard test equation

We indicate the timing of growth rates, inflation rates, asset returns, etc between times t and

t + 1 by a subscript t + 1. With utility U generated by nominal consumption C, the pricing
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kernel m for an asset’s nominal pay-off is the ratio of marginal utilities of nominal spending

for dates t+ 1 and t, or unity plus the percentage change in marginal utility,

mt+1 =
Λt+1

Λt
= 1 +

∆Λt+1

Λt
, (1)

where Λ denotes the marginal utility and ∆Λ is its change. For a risk-free bond with nominal

interest rate Rt+1 expiring next period, the future nominal payoff 1+Rt+1 is discounted by the

pricing kernel; under the no-arbitrage rule the result should equal the bond’s initial value, unity.

Familiarly, the expected kernel Et [mt+1] then equals the inverse of future pay-off, 1
(1+Rt+1) :

Et [mt+1(1 +Rt+1)] = 1,

Et [mt+1] =
1

(1 +Rt+1)
,

ie Et

[
1 +

∆Λt+1

Λt

]
=

1
(1 +Rt+1)

. (2)

If marginal utility were observable, the above would be easily tested by regressing its

realised growth rates, ∆Λ/Λ, on the discount factor, a regressor that is observed without

error. To make utility growth observable, one generally restricts the utility function to depend

on consumption only. Two such avenues are reviewed in the Appendix: imposing crra and

lognormality, or adopting a more general linear expansion of ∆Λ/Λ, an approach which imposes

no extra restrictions on [2] but ignores higher-order terms. The latter avenue leads to

g
′
t+1 = −σtθt + σt [R

′
t+1 − Et(i

′
t+1)] + ε̃g′,t+1. (3)

where g′ denotes the log change in consumption, σ the inverse of relative risk aversion,

R′ := ln(1 + R) the continuously compounded rate of return, θ the time preference parame-

ter, Et(i
′
t+1) conditional expected inflation, and ε̃g′,t+1 conditionally unexpected consumption

growth. Obviously, σ also doubles as the eis, as it relates expected consumption growth to the

real interest rate; that is, in the standard model one has eis = 1/rra even without crra, at

least approximatively.

What the combination of crra and lognormality does add is an exact solution. The only

difference with Equation (3) turns out to be the addition of a Jensen’s Inequality term,

1
2

(
s2
t,g

σt
+ 2covt(g′, i′) + σts

2
t,i

)
, (4)

where s2
g and s2

i denote the variances of the log changes in consumption growth and inflation,

respectively, and covt(g′, i′) denotes their covariance. This extra term does not involve the real
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interest rate; and assuming constant moments and constant rra, it can simply be stuffed into

the intercept. All this suggests that the eis estimated from the linear approximation model

is probably robust to the details of the basic model but that the intercept implies no good

estimate of time preference. A second implication is that the second moments in the Jensen’s

Inequality term are country-specific, so in the empirical work we add a country fixed effect to

the basic equation.

1.2 State-dependent RRA and EIS

Most empirical studies adopt the assumption of constant relative risk aversion (crra).4 The

results from the crra model have been questioned for decades, however, because the eis esti-

mated under the standard approach is too small relative to what many economists expect. As

noted in the introduction, one can object that decreasing rra is far more plausible and that

constant power utility is incompatible with the observed seasonal in consumption growth. Ac-

cordingly, we now propose simple models of preferences that are state-dependent with respect

to seasonal circumstances and changing wealth levels.

As shown in Figures 1 to 3, quarterly consumption growth exhibits a strong seasonal pattern

and much wider fluctuations than the ex post real interest rate, let alone the (unobservable)

expected real rate. Most importantly, consumption is typically rising in the Christmas/year-

end period and shrinking afterwards. If there is no strong link with the interest rate nor

with prices, an economist’s interpretation would be that there is an autonomous or exogenous

change in the parameters of utility that prompts the investor to consume more even at constant

prices and interest rates. If the marginal utility function changes, then the rra and the eis

must almost surely change too; after all, the rra is just the elasticity of marginal utility.

Let q(t) denote the quarter corresponding to the t-th observation, ie q = {1, 2, 3, 4, 1, 2, ...}.

One example of a season-dependent utility function that makes marginal utilities and con-

sumption fluctuate could be a generalized power rule like

U(Ct/Πt, q(t)) =
1

1− η
[
Ct/Πt − Lq(t)

]1−η
, (5)

where Lq(t) is the consumption standard for the q-th quarter. For instance, during the year-

4See Hall (1988) and Hansen and Singleton (1982), for an early analysis, and Attanasio et al. (2002), Vissing
Jorgensen (2002) and Attanasio and Vissing Jorgensen (2003) for recent contributions.
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Figure 1: Consumption growth and real rate (Continental European)

   

   

   

  

Key: The figure shows quarterly consumption growth rates (broken lines linking the squares) and realised real
interest rates (the full lines) for a number of countries.

end season the standard may simply be higher. The argument of U being excess consumption

rather than consumption itself, this model induces a seasonal into the rra that mimicks the

fluctuations in consumption, a familiar result re-derived below. From the first and second

derivatives, the rra fluctuates proportionally to the ratio of consumption relative to excess
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Figure 2: Consumption growth and real rate (non-European developed)

   

   

   

Key: The figure shows quarterly consumption growth rates (broken lines linking the squares) and realised real
interest rates (the full lines) for a number of countries.

consumption:

∂U

∂Ct/Πt
= (Ct/Πt − Lq(t))−η ,

∂2U

∂Ct/Π2
t

= −η(Ct/Πt − Lq(t))−η−1, (6)

⇒ −Ct/Πt

∂2U(Ct/Πt)
∂Ct/Π2

t

∂U(Ct/Πt)
∂Ct/Πt

= −Ct/Πt

−η(Ct/Πt − Lq(t))−η−1

(Ct/Πt − Lq(t))−η
,

= η
Ct/Πt

Ct/Πt − Lq(t)
. (7)

At constant real interest rates, the investors will tend to stabilize lifetime excess consumption

rather than gross consumption as under the standard model. This means that in periods of

high standards, consumption rises while excess consumption does not, which means that risk

aversion should endogenously rise, and eis fall, towards the peak quarter.

But that is not the only possible prediction. Another simple way to make marginal utility

rise in particular seasons is to let the exponent itself follow a seasonal. If U is specified as



Estimating the eis 10

Figure 3: Consumption growth and real rate (emerging)

   

 

Key: The figure shows quarterly consumption growth rates (broken lines linking the squares) and realised real
interest rates (the full lines) for a number of countries.

(C/Π)1−ηq/(1 − ηq), marginal utility equals 1/(C/Π)ηq . Therefore, rising marginal utility for

given consumption now requires a fall in η rather than the rise that was predicted by the first

seasonal-utility model. We conclude that this theory is agnostic about the seasonal pattern in

the risk aversions; which model does best is an empirical matter.

A far more familiar notion of state dependence is that rra may also change with the

level of wealth. In this statement, utility is the indirect utility of (real) wealth instead of the

direct utility of consumption, but the two are related in the sense that in the optimum both

marginal utilities are equalized. If there is a minimum-consumption standard, a minimum-

wealth standard is implied, viz the risk-free investment needed to lock-in all future minimum

consumption budgets. Again in a generalized power-utility function, for example, only wealth

W above this threshold level W then produces (indirect) utility. The familiar result is that

rra will fluctuate with W :

−W
∂2J(W )
∂W 2

∂J(W )
∂W

= η
W

W −W

So, rra falls when wealth increases and vice verse, or, equivalently, the eis rises with wealth

according to this utility function. This pattern can, of course, arise over and above the seasonal.
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1.3 The Time Aggregation Problem

The time aggregation problem is another possible reason for a low eis. If we use eg the February

15 observation of the 90-day interest rate, this should ideally be related to consumption growth

of May 15 relative to February 15, or maybe the week of May 15 relative to that of February

15. But in practice, consumption data bears on a much more extensive period, for instance

one quarter. Hall (1988) assesses the time aggregation issue by comparing annual to quarterly

and monthly data. However, for most countries monthly consumption data are not available,

so this test is difficult to replicate in an international context.

Of course, there would be no issue if consumption were constant within each quarter, but

that is hard to believe. In this paper, we come up with a partial solution by calculating a

monthly consumption figure for the middle month from the aggregate quarterly data. This

interpolator works a bit like a Hodrick-Prescott smoother. It starts from the quarter’s monthly

average consumption, Ct/3, as the first-pass estimate of the month’s level, and then administers

changes subject to the constraint that the sum of the corrections within the quarter is to be

zero. For the first month in the quarter, this first-pass value is adjusted in light of what

happened in the preceding quarter: if consumption was on the rise, the quarter’s first month is

lowered (and the preceding quarter’s third month is raised), thus smoothing out the observed

growth. Similarly, for the third month in the quarter, the first-pass value is adjusted in light

of what happened in the subsequent quarter. If consumption was still rising, the quarter’s

third month is again increased (and the next quarter’s first month is lowered) so as to smooth

out the growth. In contrast, if the next quarter consumption was lower, the original quarter’s

third month is decreased relative to its first-pass value and the next quarter’s first month is

increased to smooth out the drop. What happens to the middle month of the quarter, lastly,

depends on both the preceding and the following quarter. If we saw quarterly consumption

rise twice in a row, the figure for the middle month of the central quarter should be between

those for the first and third months. If, in contrast, the central quarter represented a peak,

then the revised peak will show up most clearly in that quarter’s middle month, with a value

above the quarter’s average while the first and last month end up with figures that are below

the quarter’s average.

Figure 4 shows two theoretical examples. The first subfigure shows what would happen

if we had an infinite chain of steadily rising quarterly data: the result would be a series of

steadily rising monthly data. The second subfigure indicates what would happen in an infinite

chain of oscillating quarterly data, alternating between a high and a low level. The resulting
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Figure 4: Extracting monthly data from quarterly use of the smoother

smoothed consumption (1): steady growth

0
1 2 3 4 5 6 7 8 9 10 11 12

quarter's monthly average

smoothed monthly interpolation

smoothed consumption (2): steady oscillation

0
1 2 3 4 5 6 7 8 9 10 11 12

quarter's monthly average

smoothed monthly interpolation

monthly series shows peaks and troughs in each quarter’s central month.

The objective of smoothness is operationalized by minimizing the sum of the squared

percentage growths in the resulting monthly figures.5 Formally, the procedure first trisects

the quarterly consumption. Time subscripts t still refer to quarters, as before. We denote

the first-, second- and third-month corrections of the consumptions in quarter t by ut, vt, wt,

and we impose wt = −ut − vt so that the total adjustments within each quarter are zero. So,

the consumption in the first month of each quarter is C1,t := (ut + Ct
3 ), where the subscript

{1, t} means the first month of the t-th quarter. Similarly, the second-month consumption is

C2,t := (vt+Ct
3 ) and the third-month consumption is C3,t := (wt+Ct

3 ) = (Ct3 −ut−vt). Secondly,

our objective function is to minimize the total variance of month-by-month consumption growth

rates, ie the sum of the squares of the monthly consumption growths:

{ut, vt}t=1,...T = argmin
(
C1,1

C3,0

)2

+
T∑
t=1

{(
C2,t

C1,t

)2

+
(
C3,t

C2,t

)2

+
(
C1,t+1

C3,t

)2
}
,

= argmin

(
u1 + C1

3

C3,0

)2

+
T∑
t=1


(
vt + Ct

3

ut + Ct
3

)2

+

(
Ct
3 − ut − vt
vt + Ct

3

)2

+

(
ut+1 + Ct+1

3
Ct
3 − ut − vt

)2
 . (8)

So, we can numerically find the values of (ut, vt) that minimize the total variance of monthly

5In the solution shown in the graphs, the objective actually was to minimize the sum of the squared changes
not the percentage changes, because that allows for an analytical solution, at least in an infinite chain of linearly
rising data or perfectly oscillating data: equal absolute month-to-month changes.
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growth, or, stated differently, maximize the smoothness of the resulting monthly data. Note

a pre-added third month from quarter 0 and, less visibly, an extra data point for month 1 of

quarter T+1. Without these, the procedure has no “anchor” for the first and last observations,

so the first and last consumption adjustments, u1 and −uT −wT , respectively, can be (and will

be) totally out of line. The notional initial consumption C3,0 can start from the first revised

figure and correct for one month of growth, calculated as the average growth observed between

the first and very last revised figure:

C3,0 =
C1,1

(C3,T /C1,1)1/(3T−1)
. (9)

The notional extra final monthly number, C1,T+1, can be created in the same style.

The revised consumption growth, denoted as g
′′
t+1, is the change between the second-month

real consumption in the next quarter and the second-month real consumption in the present

quarter,

g
′′
t+1 := ln(

C2,t+1

C2,t
)− ln(

CPI2,t+1

CPI2,t
) = ln(

Ct+1

3 + vt+1

Ct
3 + vt

)− i′t+1, (10)

where CPI2,t is the consumer price level of the second month in the t-th quarter. To jointly

assess the effects of aggregation and the adequacy of the proposed procedure, we re-test all the

models in terms of g
′′
q2,t2+h, and compare the new estimated eis with the ones based on the

quarterly aggregation data.

After this review of some modeling issues we now proceed to the statistical issues in esti-

mating the models.

2 Estimating the EIS

We first discuss the estimation methods, starting from the problem of an unobservable regres-

sor, expected inflation. For simplicity, much of that discussion is in a constant-σ framework,

but the results easily carry over to our more general model. We then present our operational

equations.

2.1 Estimation Methods

The empirical literature usually assumes the eis and the rra to be constant, and finds that

the eis is small and insignificant, suggesting that consumption growth is insensitive to the

expected real interest rate and vice versa. One practical difficulty is that one ingredient of

the expected real interest rate, the inflation expectation, is unobserved. A direct solution is to
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use survey data on expectations. For example, Hall (1988) employs the Livingston surveys on

inflation expectations, and Choi (2005) similarly works with surveys of expected stock returns

for the U.S. However, in most countries survey data are unavailable, while in those countries

where surveys do exist, the comparability across the samples depends on the survey’s scope,

the quality of questionnaires, etc. So in this paper we consider the proxy method and one

instrumental variable (iv) method, gmm.

The first method proxies the expected inflation E(i′t+1) by the realized inflation rate from

the preceding period it:

Et(i′t+1) = i′t. (11)

That is, when inflation is regarded as a martingale process, the expectation has become ob-

servable, and thus, the eis links consumption growth to the difference between the interest

rate and the actual inflation from last period [R′t+1 − i′t],

g′t+1 = −σpδ + σp [R′t+1 − i′t] + εg′,t+1, (12)

where σp denotes the eis estimated under the proxy method. The proxy method may give us the

real rate as perceived by investors, because that’s how the real rate is commonly implemented.

Otherwise, however, it looks like a dubious simplification of tsls, as stated in the intro.

The instrumental variable (iv) methods relax the assumption of martingale inflation. In this

paper, we consider the Generalized Method of Moments (gmm) as it combines the merits of

tsls with corrections for autocorrelation and heteroscedasticity. Frequently used ivs, in this

literature, are the lag of consumption growth, the stock index return, nominal interest rate and

inflation. Because consumption growth and stock return are found to have low predictability

at the quarterly frequency,6 in this paper we start from the nominal interest rate on 3-month

interbank contracts and four lags of inflation. The reason why we include four lags of inflation is

that the ar model shows a seasonality in the quarterly inflation: the autoregression coefficients

are usually negative at the first lag but almost always positive at the fourth lag. Thus, we put

all four lags into the iv group to capture the seasonality and have a good fit. In fact, the five

instruments, taken together, do quite a good job in tracking the inflation rate, which is what

we would need in tsls. We need more instruments, though: in a more complete model with

a stock-market variable and seasonals, each equation has six parameters to be estimated (see

section 2.2), so the required number of instruments (and, therefore, orthogonality conditions)

6See Hall (1988) and Yogo (2004).
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has to be at least six. We add three more lagged observations of the risk-free rate to the set.

In all iv estimations, we use the same set of eight instruments.

2.2 Test Equations

To test for wealth-related variation in the eis (rra), we invoke the familiar home-bias phe-

nomenon and accordingly proxy for changing wealth via the country’s stock index. Specifically,

we use the ‘stock index deviation’ ∆SI, a variable picked up from technical trading:

∆SI :=
St − St−260,t

St
, (13)

where St is the spot price of the stock index, and St−260,t is the moving average over the past

year (260 trading days, actually). In technical trading, the moving average is regarded as a

reference point: when St is above St−260,t, the deviation index ∆SI is positive, indicating a

buy signal or profit signal for the market and vice versa. Here we simply use this the deviation

index to see whether wealth has been rising or not, recently; there is no presumption that

St−260,t equals W . A higher ∆SI should be related to a higher risk tolerance according to the

theory.

In a general model including both seasonal consumption and wealth effect, we allow σt to

vary across quarters with a seasonal fixed effect dq and to change with stock index deviation

∆SI,

σj,t = β0 +
∑

q={1,3,4}

dq1q=q(t) + βw∆SIj,t (q = 1, 3, 4). (14)

The dummies are for observations based on quarters 1, 3 and 4. By a growth rate being

‘based on quarter q’ we mean that it compares quarters q + 1 and q. Thus, the year-end

peak should be reflected in the seasonal for quarter 3, d3, and the first-quarter decline in d4.

As there is no dummy for quarter 2, β0 estimates the base-rate rra for a second quarter of

consumption seasonality when the stock market has not moved. When we replace the σt from

the general first-approximation model—now including a country fixed effect γj reflecting the

nonlinearities—by this expression, we have our general state-dependent model for country j:

g′j,t+1 = γj − σtδ + σt[R′j,t+1 − Et(i′j,t+1)] + εg′j ,t+1,

= γj +

β0 +
∑

q=1,3,4

dq1q=q(t) + βw∆SIj,t

 {δ + [R′j,t+1 − Et(i′j,t+1)]}+ εg′j ,t+1.

(15)
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Thus, the constant δ and expected real rate are multiplied by a time-varying slope, σt, which

depends on consumption seasonals and on wealth levels.

The full model is implemented in steps. We start with the crra model, estimated via the

proxy method and gmm. We then move on to the state-dependent-rra models, again moving

gradually. The first non-crra model we estimate is one where we only have a seasonal in the

intercept. Then, we also let the slope follow the same pattern. Lastly, we look at the complete

model. Below, we show the equations — labeled crra, s1, s2 (for seasonal models), w (for

wealth-based model), and c1, c2 (for combined) — and the way the substitution elasticities

are extracted:

(crra :) g′j,t+1 = γj + σ[R′j,t+1 − Et(i′j,t+1)] + εg′j ,t+1; (16)

(s1 :) g′j,t+1 = γj +

β0 +
∑

q=1,3,4

dq1q=q(t)

 δ + σs1[R′j,t+1 − Et(i′j,t+1)] + εg′j ,t+1; (17)

(s2 :) g′j,t+1 = γj +

β0 +
∑

q=1,3,4

dq1q=q(t)

 {δ + [R′j,t+1 − Et(i′j,t+1)]}+ εg′j ,t+1, (18)

σs2,q =

 β0 , q = 2,

β0 + dq , q = 1, 3, 4;
(19)

(w :) g′j,t+1 = γj + [β0 + βw∆SIj,t] {δ + σw[R′j,t+1 − Et(i′j,t+1)]}+ εg′j ,t+1, (20)

σw,j,t = β0 + βw∆SIj,t;

σw = AVERAGE∀j,t(σw,j,t); (21)

(c1 :) g′j,t+1 = γj +

β0 +
∑

q=1,3,4

dq1q=q(t) + βw∆SIj,t

 δ + σc1[R′j,t+1 − Et(i′j,t+1)] + εg′j ,t+1,

(22)

(c2 :) g′j,t+1 = γj +

β0 +
∑

q=1,3,4

dq1q=q(t) + βw∆SIj,t

 {δ + [R′j,t+1 − Et(i′j,t+1)]}+ εg′j ,t+1,

(23)

σc2,q,j,t =

 β0 + βw∆SIj,t , q = 2,

β0 + dq + βw∆SIj,t , q = 1, 3, 4,
,

σc2,q = AVERAGE∀j,t(σc,j,q,t). (24)
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2.3 Priors and Hypotheses about EIS and RRA

With additive utility the eis also provides us with a way to measure rra, which is one of the

key numbers in asset pricing theory. To judge whether eis-implied numbers are reasonable we

need some priors.

One familiar watershed value is unity, and many economists would have an implicit prior

that rra is likely to be below unity. The reason is that only for rra below unity (or eis above

unity, more precisely) a higher expected total future income increases its present value; and

the same holds for a lower variance for total future income, in a normality or lognormality

model. In the real world, the market is unlikely to be insensitive to the growth prospects, and

it would be deemed even more counterintuitive if good news (more output or lower total risk

of output) sent the markets down. Instead, once people perceive a higher future aggregate

pay-off, given current consumption, they would probably be willing to pay more for this claim

in the current period. If that is one’s prior, the implied belief is that the rra is smaller than

unity.

A second benchmark to judge our estimates by is the numbers obtained from stock markets.

There, one usually adopts a mean-variance approach, under which the rra can be measured

either as the market risk premium divided by the market’s variance, or as the ratio of individual

assets’ risk premia over their covariance risk. However, these studies typically find that the

value of the rra exceeds unity, and more like 3 or more. Cooper and Kaplanis (1996), for

instance, advance the range 3-to-10 as reasonable. Conditional studies, especially covariance-

based ones, come up with multiples of 10, occasionally even exceeding 100. Many would think

that even 7 is already anomalously high: with a moderate long-run market volatility of, say,

15%, the implied long-run risk premium would be an implausible 16% (=0.152*7). For risk

premia between 6 and 11% we would need the rras of 3 to 5. Preferring to err on the safe

side we take 10 as the maximum plausible number.

The discrepancy between the estimated price of assets’ covariance risk (or even the esti-

mated price of market variance) and what economists would deem reasonable is called the

equity premium puzzle. But a stock-market-based rra may be overestimated, for instance be-

cause it ignores dividend taxes, price pressure and other transaction costs, information issues

and other deadweight costs (Cooper and Kaplanis, 1986), non-equity assets, and non-traded

wealth. Thus, if we study consumption data and calculate the rra as a reciprocal of the eis,

we can see whether the resulting the rra is smaller than the ones from the stock markets and
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perhaps even lower than the threshold value of unity.

Apart from compatibility of the eis estimates with priors, we can also wonder about inter-

national differences. We estimate a general-average eis (see below), but also parameters for

subsamples, namely a continental-European and an emerging-market one. A marked trait of

the continental eu group is an extensive social safety net. How this affects rra is unclear, a

priori : the safety net may be a symptom of high risk aversion, but its availability may also

stimulate more risk taking in one’s private investments. The prior about the emerging group

is also unclear. In view of their lower per capita wealth, these countries would have a higher

rra and thus, tentatively, a lower eis. However, this view implicitly adopts a representative-

consumer view, which may become less appropriate the higher the internal income inequalities

are. The typical emerging-market investor may, in fact, have an income comparable to western

countries, in which case little difference in rra is to be expected.7

3 Empirical Results

3.1 Data

Our data cover twenty-four countries. Four are emerging countries: Brazil (br), Mexico (mx),

Russia (ru) and Thailand (th), for which we have data from the first quarter (Q1) of 1993 to

the last quarter (Q4) of 2007. The twenty developed countries contain eleven continental eu

countries—Austria (at), Belgium (be), Denmark (dk), Finland (fi), France (fr), Germany

(de), Italy (it), Netherlands (nl), Norway (no), Spain (es) and Sweden (se)— and nine other

economies, often quite heterogeneous in terms of geography, cultures, policies or economic

weight: Australia (au), Canada (ca), Hong Kong (hk), Japan (jp), New Zealand (nz), Singa-

pore (sg), Switzerland (ch), United Kingdom (uk) and United States (us). The sample of the

developed countries starts earlier, from Q1 of 1988 to Q4 of 2007. The consumption data are

quarterly household expenditures per capita, the interest rates are the three-month interbank

rates on the middle date of each quarter, and the price level is the cpi of the quarter’s middle

month. Consistent with quarterly consumption, the inflation rate is calculated as a quarterly

price change, rather than the twelve-month one conventionally reported in the media. All the

data are from Datastream.

7If the class of investors is very different from the general population, also aggregate consumption data
become less appropriate, though.
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Table 1: Testing the martingale assumption on inflation

i′t,t+∆ = ρ0 + ρ1i
′
t−∆,t + ξ.

Europe Emerging The rest
ρ1 ρ1 ρ1

at ∗∗∗-0.417 br ∗∗∗0.502 au ∗0.173
be ∗∗∗-0.383 mx ∗∗∗0.622 ca -0.014
fi 0.057 ru 0.475 hk ∗∗∗0.582
fr -0.073 th ∗0.210 jp ∗∗∗-0.347
de -0.172 nz ∗∗∗-0.267
it ∗∗∗0.501 sg ∗∗∗-0.267
nl ∗∗∗-0.411 ch ∗∗-0.215
es ∗∗∗-0.408 uk ∗∗-0.207
dk ∗∗∗-0.477 us -0.121
no -0.049
se ∗∗∗-0.435
](−ρ1) 10/11 0/4 7/9

Here, “](−ρ1)” is the number of negative ρs out of total
in each subsample.

Panel regressions offer the advantage of increasing observation numbers and being able to

model time and space simultaneously. Therefore, we estimate the eis with a fixed effect model,

where different intercepts reflect a country’s heterogeneity and the eis (σ) is estimated via a

common slope across the panel. The empirical tests are based on three pooled data sets: the

whole sample (including all countries, developed and developing), and two meaningful subsets,

the continental European and the emerging countries. We have discussed possible priors about

the eis for the European and emerging subsamples. In addition, the eu group is characterized

by a high degree of integration. As to the emerging-market group, their consumption patterns

are more noisy, being more vulnerable to the macro risks (eg inflation risk, policy risk, etc.)

relative to developed economies. Most notably, each of the emerging countries in our sample

experienced a financial crisis during the sample period: the Mexican Crisis from 1994 to 1995,

Thailand’s crisis in 1997 and later the crises in the Russian Federation (1998) and in Brazil

(1999).

We now move on to the empirics. Most of the analysis is based on uncorrected quarterly

data. The results for the constructed middle-month data are, in fact, slightly but systematically

better—for anyone who believes in low risk aversions or high eis, that is—but the method has

not earned any credibility elsewhere. To set a standard for the state-dependent models we

start with the traditional workhorse, the crra model.
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Table 2: Pooled estimates of EIS under different models

Panel A: Proxy method
Whole sample Europe Emerging countries

σp ηp σp ηp σp ηp
∗∗∗-0.174 -5.747 ∗∗-0.261 -3.831 ∗∗-0.284 -3.521

F [η = 3, 10] ∗∗∗ < 3 ∗∗∗ < 3 ∗∗∗ < 3
F [η = 1] ∗∗∗ < 1 ∗∗∗ < 1 ∗∗∗ < 1

Panel B: iv methods: gmm and tsls
σGMM ηGMM σGMM ηGMM σGMM ηGMM
∗∗∗0.107 9.346 0.120 8.333 0.223 4.484

F [η = 3, 10] [≈< 10] [≈< 10] [≈< 10]
F [η = 1] ∗∗∗ > 1 ∗∗∗ > 1 ∗∗∗ > 1

σTSLS ηTSLS σTSLS ηTSLS σTSLS ηTSLS
∗∗-0.144 -6.944 0.180 5.556 -0.320 -3.125

F [η = 3, 10] ∗∗∗ < 3 [≈< 10] ∗∗∗ < 3
F [η = 1] ∗∗∗ < 1 ∗∗∗ < 1 ∗∗∗ < 1

“F [η = 3, 10]” refers to two F-tests, viz “F [η = 3]” and “F [η = 10]”. Asterixes
before the 10 [or after the 3] mean that 10 [or 3] is statistically too far from the
estimate to be a possible true answer. Similarly, “∗∗∗ < 3” means the η is clearly
smaller than 3 at the 1% significant level; while an expression like [≈< 10] means
the η is insignificantly smaller than 10. “∗∗∗”, “∗∗” and “∗” are the significance
level at 1%, 5% and 10%.

3.2 EIS Estimated Under CRRA Assumptions

We start from the proxy method where the actual inflation rate from last period substitutes

for expected inflation Et(i′t+1). In Table 1 we first examine the martingale assumption of the

proxy method via an AR(1) model of inflation for each country. Under a martingale, where

inflation is assumed to be wandering randomly, the first-order autocorrelation coefficients, ρ1,

should be unity. However, strongly negative ρ1s dominate: ten of eleven continental European

countries have negative ρ1s, and so have seven of nine remaining developed countries. Although

there is a pattern of mild momentum in the emerging group, these ρ1s are still much smaller

than unity. So, the martingale is rejected, and the estimates from the proxy method may be

unreliable. The potentially redeeming factor of this approach is that the estimation errors at

the first stage of tsls are avoided; but whether this actually means a lot remains to be seen.

Table 2 summarizes the estimates of the parameters of interest obtained from crra models

considered in this paper. From top to bottom, the panels refer to the proxy and gmm methods,

with tsls added for comparison’s sake, while from left to right we show the columns based on,

respectively, the whole sample and two sub-sets, the continental European and the emerging
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countries. In Panel A, the eis (σ) is estimated via the proxy method.8 All the values (σp) are

significantly negative, which is incompatible with risk aversion for a concave utility function.

In short, the proxy method performs badly. It is not obvious whether the flawed martingale

assumption is the main cause: for emerging markets, where the ρ1s were clearly positive rather

than usually negative (Table 1), we actually see the most negative estimate for the eis among

the three.

In Panel B, the eis is first estimated under gmm. We have strikingly higher σs than under

the proxy and tsls method; in fact, all the σs become positive and two out of three are

significant. The emerging countries now come up with the highest σGMM estimate, 0.535,

unconvincingly suggesting that they would be the least risk-averse group.

It is tempting to blame the failure of the proxy method on the inappropriateness of the

martingale assumption. Still, we have already noted that for emerging markets, where first-

order autocorrelation was at least positive rather than negative, the proxy method did worse

rather than better. The same insight is obtained when we consider the tsls estimates added

below the gmm results in the table. tsls works with an augmented ar (4) model rather than

assuming a martingale, but is otherwise similar to the proxy method in that the final estimates

come from an ols regression. We see that correcting the martingale assumption has a strong

beneficial effect for the European group only; it hardly improves the all-country estimate and

actually worsens the emerging-market one somewhat. Thus, most of the improvement in gmm

must have come from the extra information from the orthogonality constraints and the more

judicious weighting of the information.

To close the discussion of the crra model, we calculate the implied rra as the reciprocal of

the estimated eis and test whether the rra estimate is significantly below 3, above 3 but below

10, or above 10, conventional intervals from financial markets. The other critical value that is

tested is rra < 1, a key benchmark in the equity puzzle. From Table 2, the rra estimates

under gmm are very close to the upper bound and insignificantly different from 10, so at this

stage we do not find that consumption data generate lower rra than standard financial ones.

From the equity-puzzle perspective, the estimated eiss are still too low, though, ie the implied

rras are still too high. Let’s consider to what extent the crra assumption is responsible. We

start with seasonally varying utility. The crra/gmm estimates from the current section serve

8In appendix, as a complement of the pooled regressions, we report the estimates for each country, equation
by equation.
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as the benchmark model.

3.2.1 The Pattern of EIS with Seasonal Consumption

We take into account the consumption seasonality in two steps, first by just adding dummy

variables in the intercepts (which is similar in spirit to just deseasonalising the data), and later

by also allowing the slope coefficient of the real rate to follow the same pattern. Thus, the first

seasonal model is

g′j,t+1 = γj +

βs1,0 +
∑

q=1,3,4

dq1q=q(t)

 δ + σs1[R′j,t+1 − Et(i′j,t+1)] + εg′j ,t+1, (25)

where γj is the fixed effect, and βs1,0 is the intercept for quarter 2, and where the dqs for

quarter 1, 3, and 4 indicate to what extent these quarters’ intercepts deviate from that of

quarter 2.

We report the estimates of the dummy intercepts and common slope coefficients in Panel

A of Table 3. For the whole sample and the continental-Europe subset, the dummy intercepts

are significantly different from zero, while they are insignificant for the emerging countries.

This result is consistent with Figures 1 to 3, where the emerging countries exhibit a weaker

seasonal pattern than the developed countries. The less significant seasonality may be because

all the observed emerging countries experienced a financial crisis during the sample period,

which may have had a pervasive influence on the economies and weakened the seasonal pat-

tern in consumption. Equally probable, the year-end seasonal may be a symptom of affluence.

Still, regardless of significance, d3 is in fact positive (and the most positive among the seasonal

effects) in all cases, pointing towards the Christmas/New-Year holidays in the fourth quarter

which boost the consumption growth based on the third quarter. In keeping with these ob-

servations, d4 is negative everywhere, reflecting a falling consumption in the quarter following

the gift season. Secondly, we find that for the developed countries, σs1s are higher than their

counterparts σGMM s under the standard gmm. (In the table, an increase in an eis estimate

relative to the gmm/crra figure is denoted with ‘+’, otherwise we show a ‘−’.) Accordingly,

while the implied rra ηs1 estimates are still significantly above unit, they are now in the range

2-3. The estimate for the emerging-country subset, 1.869, is still the lowest, but is also very

imprecise. Thirdly, the model’s R2s increase dramatically except for the emerging countries.9

9The R2s are reported in the Appendix, equation by equation.
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Table 3: Estimating state-dependent eis

Whole sample Continental Europe Emerging countries
Panel A: Seasonal Intercepts:

d1
∗∗∗0.012 ∗∗∗0.025 0.008

d3
∗∗∗0.028 ∗∗∗0.040 ∗∗0.018

d4
∗∗∗-0.056 ∗∗∗-0.050 ∗∗∗-0.018

σs1
∗∗∗0.306 + ∗∗∗0.282 + 0.535 +

ηs1 3.268 ∗∗∗[3,10]∗∗∗ 3.546 [3,10]∗∗∗ 1.869 ∗∗∗[1,3]∗∗∗

Panel B: Full Seasonal Model:
σs2,1

∗∗∗0.132 ∗∗∗0.676 0.072
σs2,2 0.012 0.002 0.030
σs2,3

∗∗∗0.691 ∗∗∗1.916 ∗∗∗0.492
σs2,4 0.038 ∗∗∗-1.519 0.184
σs2 0.218 0.269 0.195
ηs2 4.582 3.721 5.141
Feq

∗∗∗ ∗∗∗ —
Panel C: wealth-related:

βw,0
∗∗∗0.255 ∗∗∗0.237 ∗∗∗0.339

βw,1
∗∗∗0.068 ∗∗∗0.032 ∗∗∗0.076

σw 0.257 + 0.238 + 0.345 +
ηw 3.891 4.202 2.899

Panel D: seasonal- and wealth-related intercepts
d1

∗∗∗0.181 ∗∗∗0.253 ∗-0.009
d3

∗∗∗0.142 ∗∗∗0.208 0.004
d4

∗∗∗-0.018 ∗∗∗0.024 ∗∗∗-0.031
βc1,1

∗∗∗0.078 ∗∗∗0.207 ∗∗∗0.082
σc1

∗∗∗0.671 + ∗∗∗1.468 + ∗0.241 +
ηc1 1.490 ∗∗∗ <[3,10]∗∗∗ 0.681 ∗∗∗ <1 4.149 ∗∗∗[3,10]∗∗∗

Panel E: Combination of seasonal- and wealth-related model
d1

∗∗∗0.005 0.000 0.032
d3

∗∗∗0.020 0.002 ∗0.036
d4

∗∗∗-0.059 ∗∗∗-0.057 -0.013
βc2,0

∗∗∗0.766 ∗∗10.130 ∗∗∗1.169
βc2,1

∗∗∗0.055 ∗∗0.052 ∗∗∗0.089
σc2,1 0.365 1.166 0.081
σc2,2 0.769 10.133 1.176
σc2,3 0.414 2.332 0.035
σc2,4 0.032 -1.455 0.275
σc2 0.395 + 3.044 + 0.392 +
ηc2 2.532 0.329 2.551

“+” indicates that the estimated σ is higher than its counterpart under the standard gmm. “Feq” is the F-test on
the equality of the eiss across quarters in the second seasonality model. Asterixes before the 10 [or after the 3] mean
that 10 [or 3] is statistically too far from the estimate to be a possible true answer. Similarly, “∗∗∗ < 3” means the
η is clearly smaller than 3 at the 1% significant level; while an expression like [≈< 10] means the η is insignificantly
smaller than 10. “∗∗∗”, “∗∗” and “∗” are the significance level at 1%, 5% and 10%.

In short, for the developed countries, when we allow for the seasonality in consumption in a

very simple way, both the explanatory power and the estimated eis rise.

In the second seasonal model, we extend the seasonality to the eis, as the formal model
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suggests:

g′j,t+1 = γj +

βs2,0 +
∑

q=1,3,4

dq1q=q(t)

 {δ + [R′j,t+1 − Et(i′j,t+1)]}+ εg′j ,t+1. (26)

In Panel B of Table 3, we report the σs2,q and an F-test of equality of the eiss across quarters,

Feq. Both the t- and the F-tests confirm that the eis has a seasonal pattern in the developed

countries, but for the emerging group the evidence remains unclear. Again as before, the σs

for base quarters 1 and (especially) 3 are still the highest, following the pattern of consumption

growth itself. This is more consistent with a model where the exponent η fluctuates seasonally

rather than the minimum consumption standard L. The average substitution elasticities are

somewhat lower than those in the seasonal-intercept model (Panel A), therefore the corre-

sponding risk-aversions are somewhat higher. This time, emerging countries do appear to have

a marginally higher rra than the other countries.

3.2.2 Wealth-related Fluctuation in EIS and RRA

The national stock-market index deviation ∆SI, our proxy for changing wealth, should posi-

tively correlate with the eis if agents have decreasing rra, ie increasing relative risk tolerance.

Thus, we expect a positive βw,1 in

σj,t = βw,0 + βw,1∆SIj,t, (27)

with the betas estimated from

g′j,t+1 = γj + [βw,0 + βw,1∆SIj,t] {δ + σw[R′j,t+1 − Et(i′j,t+1)]}+ εg′j ,t+1. (28)

From Panel C of Table 3, the base eis rates, βw,0, are somewhat higher than the estimates

from the seasonal model, and all are significantly positive. βw,1 is always positive and sig-

nificant, indicating that risk tolerance seems to be higher after a rise in the stock market, as

hypothesized, even though the effect is algebraically small (0.03 to 0.075).10 When we compute

average eis numbers and their corresponding rra estimates, we get numbers like 3 or 4.

3.2.3 Joint Impact of Seasonal Consumption and Wealth

Lastly we merge the impacts of seasonal consumption with the one of changing wealth. Again,

the tests are implemented in two steps: first we give the coefficient of time preference δ a weight

10As the local stock market index must be an imperfect proxy for true wealth, the effect is probably under-
estimated.
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that changes with seasonal consumption growth and wealth, while in step 2 the coefficients of

both δ and the real rate are varying jointly. The first-stage model is,

g′j,t+1 = γj +

βc1,0 +
∑

q=1,3,4

dq1q=q(t) + βc1,1∆SIj,t

 δ+σc1[R′j,t+1−Et(i′j,t+1)] + εg′j ,t+1, (29)

where the intercepts capture both the seasonality and the direct effect, if any, from wealth

variations on consumption. The relevant estimates are presented in Panel D of Table 3. The

seasonal dummy variables are again significant except for the emerging subset, suggesting the

existence of seasonality: d1 and d3 are still higher than d4, indicating year-end holiday effects

on consumption. βc1,1 is significantly positive everywhere. Finally, we obtain eiss (σc1s) which,

for the developed countries and the total sample, are even higher than the ones estimated from

Equation [25], the numbers σs1 from Panel A, while the estimate for the emerging markets is

lower. The estimated rra for continental Europe is even below unity, the first such number

in this study. If one’s prior is a low value for rra in general but a higher one for less wealthy

countries, these results make sense.

In the second-stage model, the time preference as well as the real rate share a state-

dependent eis coefficient:

g′j,t+1 = γj +

βc2,0 +
∑

q=1,3,4

dq1q=q(t) + βc2,1∆SIj,t

 {δ + [R′j,t+1 −Et(i′j,t+1)]}+ εg′j ,t+1. (30)

The estimates are presented in Panel E. The seasonality and stock-market coefficients are

qualitatively unaltered. One unexplained effect is the hard-to-believe rise in the base rate of

eis for continental Europe following a rise in the stock market, βc2,1 = 10. However, note that

the coefficient has a high standard error (at 10, the coefficient is significant at the 5% level

only, while the other base rate estimates are about 10 times smaller but significant at the 1%

level or better.). This should probably make us take the European estimated average rra,

.33, with a grain of salt; the other estimates are about 2.5.

In short, the eis implies quite credible numbers for the rra, at least if one takes the lower

end of stock-index-based as the norm rather than unity. But in order to get these numbers one

needs to take into account simple and plausible source of fluctuations in the rra, and bear in

mind that these fluctuations also affect the regression term that, in the crra model, would

have been the constant. All these estimates are obtained from standard consumption data.

In the next subsection we briefly show that our simple consumption-smoothing/intrapolation

algorithm systematically increases the eis estimates, ie further lowers the corresponding rra

estimate.
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Table 4: Results from revised consumption growth rates: system estimates of EIS under various
models

Whole sample Continental Europe Emerging countries
Panel A: rra, Proxy method

σp
∗∗∗-0.147 + ∗∗-0.319 + ∗∗-0.269 +

Panel B: rra estimated with gmm
σGMM

∗∗∗0.120 + ∗∗0.272 + ∗∗∗0.443 +
ηGMM 8.333 3.676 2.257

Panel C: Seasonality intercepts:
d1

∗∗∗0.024 ∗∗∗0.039 0.014
d3

∗∗∗0.041 ∗∗∗0.053 ∗∗0.023
d4

∗∗∗-0.063 ∗∗∗-0.057 ∗∗-0.016
σs1

∗∗∗0.358 + ∗∗∗0.528 + 0.552 +
ηs1 2.793 1.894 1.812

Panel D: Full seasonal model
σs2,1

∗∗∗0.395 + ∗∗∗1.112 + 0.047 −
σs2,2

∗∗∗0.007 − -0.002 − 0.028 −
σs2,3

∗∗∗0.750 + ∗∗∗2.688 + 0.484 −
σs2,4 -0.024 − ∗∗∗-2.017 − 0.173 −
σs2 0.282 + 0.445 + 0.183 −
ηs2 3.546 2.246 5.464
Feq ∗ ∗ ∗ ∗∗ —

Panel E: rra decreasing in wealth
βw,0

∗∗∗0.276 ∗∗∗0.403 ∗∗∗0.399
βw,1

∗∗∗0.063 ∗∗∗0.025 ∗∗∗0.080
σw 0.278 + 0.404 + 0.405 +
ηw 3.597 2.475 2.469

Panel F: Seasonal- and Wealth-related intercepts
d1

∗∗∗0.281 ∗∗∗0.309 ∗-0.026
d3

∗∗∗0.217 ∗∗∗0.247 -0.012
d4

∗∗∗0.107 ∗∗∗0.164 -0.012
βc1

∗∗∗0.169 ∗∗∗0.467 ∗∗∗0.091
σc1

∗∗∗1.294 + ∗∗2.029 + 0.251 –
ηc1 0.773 0.493 3.984

Panel G: Combination of Seasonal- and Wealth-related model
d1

∗∗∗0.016 ∗∗0.008 0.022
d3

∗∗∗0.033 ∗∗0.007 ∗0.038
d4

∗∗∗-0.064 ∗∗∗-0.062 -0.014
βc2,0

∗∗∗0.859 + ∗∗∗11.302 ∗∗1.140
βc2,1

∗∗∗0.053 + ∗∗∗0.056 ∗∗∗0.092
σc2,1 0.499 + 1.677 + 0.094 +
σc2,2 0.859 + 11.306 + 1.149 −
σc2,3 0.458 + 3.025 + 0.058 +
σc2,4 0.012 − -2.064 − 0.220 −
σc2 0.457 + 3.486 + 0.380 −
ηs2 2.188 0.287 2.632

“+” indicate that the eis in terms of middle-month growth is higher than the one of raw growth, otherwise we use
“−”. “Feq” is the F-test on the equality of the eiss across quarters in the second seasonality model.
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3.3 Estimates From Constructed Consumption Levels for the Mid-Quarter
Month

Recall that by comparing each quarter with the preceding and the subsequent quarter, one

can assess how total quarterly consumption is distributed across the three months, at least if

one accepts the prior that changes tend to be smooth. Applying the algorithm, we retrieve the

consumption data for each quarter’s middle month, and recompute three-month growth rates.

These are then subjected to the same estimation procedures as the original data.

Table 4 reports the new eiss estimates. In addition, we compare the new figures with

the corresponding ones obtained from uncorrected data. If the new eis is higher than the

one obtained from the raw growth data, we denote this occurrence as “+”, otherwise, we

show a “–”. Going from top to bottom, the test results from the revised growth data evolve

in a very similar pattern as those from the raw data. Especially, the proxy method still

generates negative σs in the whole sample and in the two subsets. gmm estimation, in contrast,

produces positive σs, and significant ones at that. In the seasonality models we observe strong

seasonality in consumption growth, except for the emerging countries; and after controlling for

the seasonality, both the eis estimate and the models’ explanatory power become higher than

the ones under the standard gmm for the developed countries. In the second-stage seasonality

model, we find that the eis significantly varies across quarters; in the third-to-fourth quarter

growth is again the highest, even for the emerging group. In the decreasing-rra models,

stock-market sensitivities βw are clearly positive all the time, supporting the hypothesis that

the eis is co-varying positively with wealth. Across the panels, the continental European subset

consistently has the highest eiss, ie the lowest rras.

When we compare the eiss based on the middle-month growth with the ones on the quar-

terly growth, we find that the new estimate is typically higher than the raw one. Of the total

39 eis estimates (not counting the means, for the models with seasonal σ), we observe 27 rises

against 12 drops. If, in the models with seasonally varying eis, we just consider the means in-

stead of the (noisy) four quarterly estimates, we even note that 18 out of 21 σs are higher. The

gains are most systematic for the all-country and continental European samples. Perhaps the

emerging group has inherently less stable consumption patterns, in which a smoothing-based

correction would achieve little.

This, of course, is just a first application of an otherwise untested method. While the

results are encouraging, they are by no means conclusive. Thus, in the concluding section of

the paper the main message of the paper is based on the raw data.
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4 Conclusions

The standard model for estimating an eis, with time-additive utility and constant relative risk

aversion, is often regarded as a failure as little or no link is detected between expected real

consumption growth and the real interest rate. We show that by simple modifications of the

basic model—namely, accounting for seasonals and allowing a role for stock prices as proxies

for wealth—produces elasticities that are quite compatible with other studies, including values

implied by the more reasonable range of risk-aversion estimates obtained from capm tests.

Our eis estimates are obtained from gmm, after unsuccessfully trying the standard proxy for

expected inflation. We also pool data from 24 countries, as single-country estimates are very

imprecise and erratic. Our attempt to reduce the time-aggregation problem in consumption

data, lastly, is successful in the sense that the resulting eis estimates are even higher.

The proxy method uses the realized inflation from the preceding period as a substitute

for the expected inflation. In reality, however, in the emerging countries, inflation exhibits

only a weak first-order positive autocorrelation, while in the developed economies we even

find significantly negative first-order autocorrelations. Moreover, for many countries we see a

strong seasonal in their inflation data. Also in terms of results the proxy method performs

badly, with negative σs everywhere. Unexpectedly, tsls brings no improvement; but gmm

does generate higher σs than the proxy method.

There is a clear seasonal pattern in consumption growth, with pronounced consumption

growth in the last quarter relative to the third, and lower or even negative growth in the first

quarter of the next year relative to the fourth in the current year. This strongly suggests

a Christmas-NewYear effect. In the testing models, the seasonal dummy intercepts explain

a substantial part of the variance of consumption growth, and the slopes σs turn out to be

higher than before controlling for seasonality. The eis also correlates positively with changes

in wealth, as one expects under eg generalized power utility; this indeed is the outcome of tests

where the stock index deviation ∆SI proxies for the changing wealth. Finally, when we merge

the wealth impact with the seasonal impact on the intercepts, we find that the estimated eis

again rises, although some of that effect disappears when we also let the coefficient for the real

rate follow the same pattern. The general conclusion is that the eis estimates are not as small

(or even negative) as is traditionally reported. By implication, the rra numbers inferred by

inverting the eis estimates, as one can do under the assumption of time-additive utility, are by

no means extravagantly high. Rather, they come up at the lower end of what one infers from
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market risk premia and variances. Occasionally, rra estimates even fall below unity.

Finally, we re-run all models based on revised data, obtained by constructing a monthly

figure for each quarter’s middle month. The procedure assumes that monthly data are smooth,

so that information about the distribution of consumption within the quarter can be gleaned

from looking at the adjacent quarters. Based on a comparison of the σs in terms of revised and

original consumptions, it looks as if the time aggregation problem biases the eis downwards,

notably for the developed countries.
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Appendices

The crra/lognormal model

If we assume crra, the general pricing equation features the expectation of the marginal utility

ratio e−θ(1 + gt+1)−η, multiplied by the future value of a bond deflated by (1 + it+1). The

resulting present value must be equal to unity, the initial investment:

Et

[
e−θ(1 + gt+1)−η

1 +Rt+1

1 + it+1

]
= 1.

We move the variables known at time t to the right-hand side of equation, and leave the

expectation terms on the left-hand side. The result is

Et

[
(1 + gt+1)−η

(1 + it+1)

]
= eθ−ln(1+Rt+1). (31)

If consumption growth 1 + g and inflation 1 + i are lognormally distributed with conditional

means (µg,t, µi,t) and standard errors (sg, si), the expected values of their logs equal the

lognormal means plus the Jensens inequality term, i.c., Et(1 + x) = µx,t + 1
2s

2
x with 1 + x =

(1 + g)−η/(1 + i). So, Et
[

(1+gt+1)−η

(1+it+1)

]
can be written as the exponential function,

Et

[
(1 + gt+1)−η

(1 + it+1)

]
= Et

[
e−η ln(1+gt+1)−ln(1+it+1)

]
= e(−ηµg,t−µi,t)+ 1

2(η2s2g+2ηcovt(g′,i′)+s2i ).

Then we replace the expectations on the left-hand side of Equation [31] with the exponential

function of the lognormal means and variance-covariances:

e[−ηµg,t−µi,t+
1
2(η2s2g+2ηcovt(g′,i′)+s2i )] = eθ−ln(1+Rt+1).

Therefore,

−ηµg,t − µi,t + 1
2

(
η2s2

g + 2ηcovt(g′, i′) + s2
i

)
= θ −R′t+1,

µg,t =
[

1
2η

(
η2s2

g + 2ηcovt(g′, i′) + s2
i

)
− 1

ηθ
]

+ 1
η

(
R
′
t+1 − µi,t

)
. (32)

We replace the dependent variable µg,t by its realized value g′t+1 by adding the error term

εg′,t+1 to the right-hand side. The scaler 1
η is replaced with σ, which results in

g′t+1 =
[σ

2
(
η2s2

g + 2ηcovt(g′, i′) + s2
i

)
− σθ

]
+ σ

(
R
′
t+1 − µi,t

)
+ εg′,t+1. (33)

Generalisation up to a Linear Approximation

The marginal utility change ∆Λ can be expanded into a total differential involving its three

determinants: nominal consumption level C, time t, and the price level Π, as we do in the
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first line of Equation [34].11 Moreover, the marginal utility Λ is the derivative of utility with

respect to consumption, so it can be rewritten as ∂U
∂C as we do in line two below. According

to Roy’s Identity, the derivative ∂U
∂Π equals −C

Π
∂U
∂C . So, in the third line of the equation we

make the substitution and expand the product, within the brackets in the fourth line, using

the derivatives of ∂U
∂C and of C

Π . In the last line, we combine the second and third items, and

extract C ∂2U
∂C2 . The remaining expression between brackets is actually the real consumption

growth:

dΛ =
∂Λ
∂t

dt+
∂Λ
∂C

dC +
∂Λ
∂Π

dΠ,

=
∂2U

∂C∂t
dt+

∂2U

∂C2
dC +

∂2U

∂Π∂C
dΠ,

=
∂2U

∂C∂t
dt+

∂2U

∂C2
dC −

∂ ∂U∂C
C
Π

∂C
dΠ,

=
∂2U

∂C∂t
dt+

∂2U

∂C2
dC −

[
∂2U

∂C2

C

Π
+
∂U

∂C

∂CΠ
∂C

]
dΠ,

=
∂2U

∂C∂t
dt+ C

∂2U

∂C2

[
dC
C
− dΠ

Π

]
− ∂U

∂C

dΠ
Π
. (34)

Lastly, we obtain the percentage change in marginal utility dΛ
Λ by dividing Equation [34] by

∂U
∂C :

dΛ
Λ

=
∂2U
∂C∂tdt+ C ∂2U

∂C2

[
dC
C −

dΠ
Π

]
− ∂U

∂C
dΠ
Π

∂U
∂C

,

= −θtdt− ηt
[

dC
C
− dΠ

Π

]
− dΠ

Π
,

= −θtdt− ηt
[
d ln

C

Π

]
− d ln Π, (35)

where θt := −∂2U/(∂C∂t)
∂U/∂C measures time preference, and ηt := −C ∂2U/∂C2

∂U/∂C measures the rra.

As indicated by the time subscripts, neither of the two parameters is necessarily constant.

According to Equation [2] and Equation [35], if we can discretize the differentials, we obtain

Et

[
1− θt∆t− ηt

(
∆ ln

C

Π

)
−∆ ln Π

]
≈ 1

1 +Rt+1
,

Now 1
1+Rt+1

approximately equals 1− ln(1 +Rt+1), so we can simplify the above into

Et

[
θt∆t+ ηt

(
∆ ln

C

Π

)
+ ∆ ln Π

]
≈ ln(1 +Rt+1).

11The second-order terms in an Ito expansion are omitted, here, for simplicity; the second order terms are
similar to the Jensen’s Inequality term in the crra-lognormal model.
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Next we move time preference θt∆t and expected inflation Et(∆ ln Π) to the right-hand side,

and divide the equation by −ηt. So, in Equation [36] the real consumption growth
(
∆ ln C

Π

)
is the dependent variable, explained by time preference, rra, the interest rate and expected

inflation:

Et

(
∆ ln

C

Π

)
≈ − 1

ηt
θt∆t+

1
ηt

[ln(1 +Rt+1)− Et(∆ lnπ)] ,

Et(g′t+1) = −σtθt + σt [R′t+1 − Et(i′t+1)]. (36)

In the second line, above, the scaler 1
ηt

has been replaced by σt; ∆t is normalized to unity; and

real growth ∆ lnC/Π and inflation ∆ lnπ have been denoted by g
′
t+1 and i

′
t+1, respectively.

The prime notation indicates a continuously compound rate, eg g
′
t+1 and i

′
t+1, to distinguish

them from the simple growth rates, eg g′ = ln(1 + g).

All of the above still refers to conditional expectations. The realized values equal the

expectations plus shocks,

g
′
t+1 = Et(g

′
t+1) + εg′,t+1,

i
′
t+1 = Et(i

′
t+1) + εi′,t+1.

Thus, if we add unexpected consumption growth on both sides, Equation [36] describes realized

growth g
′
t+1 as follows:

g
′
t+1 = −σtθt + σt [R

′
t+1 − Et(i

′
t+1)] + ε̃g′,t+1. (37)
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Appendix: Estimates of the Models: Equation by Equation

Table 5: Estimating the EIS in the proxy method

g′t+1 = −σδ + σ [R′t+1 − i′t)] + εg′,t+1.
i′t+1 = ρ0 + ρ1i

′
t + ξ.

Panel A: Continental Europe Panel C: the Rest Developed Panel C: Emerging
σ ρ1 σ ρ1 σ ρ1

at ∗∗∗-2.271 ∗∗∗-0.417 au -0.234 ∗0.173 br -0.428 ∗∗∗0.502
be ∗-0.578 ∗∗∗-0.383 ca ∗∗∗-0.275 -0.014 mx ∗∗∗-0.763 ∗∗∗0.622
fi ∗∗∗-3.046 0.057 hk -0.089 ∗∗∗0.582 ru 0.093 0.475
fr ∗∗-0.900 -0.073 jp ∗∗-0.878 ∗∗∗-0.347 th ∗∗∗-0.528 ∗0.210
de ∗∗∗-2.141 -0.172 nz -0.138 ∗∗∗-0.267
it 0.296 ∗∗∗0.501 sg -0.102 ∗∗∗-0.267
nl -0.028 ∗∗∗-0.411 ch -0.021 ∗∗-0.215
es ∗∗-1.152 ∗∗∗-0.408 uk ∗∗∗-0.491 ∗∗-0.207
dk ∗∗0.769 ∗∗∗-0.477 us -0.097 -0.121
no 0.194 -0.049
se ∗∗∗2.300 ∗∗∗-0.435
σ -0.596 σ -0.258 σ -0.407
](+/N) 4/11 2/11 ](+/N) 0/9 2/9 ](+/N) 1/4 4/4
Here, “σ is the average σ and “](+/N)” is the number of positive σs over the total number of
cross-section in each panel.
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