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Abstract 

 

We model the multifaceted impact of pricing decisions in B2B contexts and show 

how a seller can develop optimal inter-temporal targeted pricing strategies to 

maximize long-term customer value. We empirically model the B2B customer’s 

purchase decisions in an integrated fashion. In order to facilitate targeting and to 

capture the short and long-term dynamics of B2B customer purchasing, our 

modeling framework weaves together in a hierarchical Bayesian manner, 

multivariate copulas, a non-homogeneous hidden Markov model, and control 

functions for price endogeneity. We estimate our model on longitudinal transactions 

data from an aluminum retailer. We find that customers in our dataset can be best 

represented by two latent states - a “vigilant” state characterized by heightened price 

sensitivity and a cautious approach to ordering, and a more “relaxed” state. The 

seller’s pricing decisions can transition customers between these two states. An 

optimal dynamic and targeted pricing strategy based on our model suggests a 52% 

improvement in profitability compared to the status quo. Furthermore, a 

counterfactual analysis which examines the optimal policy under fluctuating 

commodity prices reveals that the seller should pass much of the costs to customers 

when commodity prices increase, but hoard most of the profit when commodity 

prices (seller’s costs) decrease.  
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1. Introduction 

Despite the major role of the business-to-business (B2B) sector in the U.S. and world economy, 

marketing modelers have paid scant attention to B2B issues. While the B2B sector commands 

more than 50% market share of all commerce in the U.S. (U.S. Department of Commerce 2007), 

only a small fraction (approximately 3.4%) of the articles in the top four marketing journals deal 

with B2B contexts (LaPlaca and Katrichis 2009). Among the different marketing decisions, 

pricing in B2B environments is particularly under-researched (Reid and Plank 2004). In this 

paper, we address this imbalance by developing an integrated framework for modeling the 

multiple impacts of pricing in B2B contexts. We then illustrate how our framework can aid 

sellers in implementing first-degree and inter-temporal price discrimination for long-run 

profitability. 

Pricing decisions in B2B contexts are different from those within business-to-consumer 

(B2C) environments on multiple facets. First, B2B settings are often characterized by highly 

variable costs of goods and order sizes, the prevalence of product and service customization, and 

the reliance on personal selling to cement transactions. These factors create a fertile environment 

for implementing first degree and inter-temporal price discrimination. Sellers in many B2B 

situations can easily vary prices across buyers and can even change prices between subsequent 

purchases of the same buyer. This flexibility generates significant opportunities for sellers to 

pursue long-term profitability. In contrast, B2C retailers rely on a restricted set of targeted price 

discrimination mechanisms (such as coupons), and targeted pricing is difficult, in general, 

because of logistical and ethical concerns.   

Second, the B2B environment involves evolving long-term relationships between buyers 

and sellers (Morgan and Hunt 1994). The development of trust in such relationships can impact 

price sensitivities over time. Pricing decisions, in turn, can play a vital role in developing and 

sustaining such relationships (Kalwani and Narayandas 1995). Third, transactions in B2B 

markets exhibit greater complexity as the business customer typically makes several inter-related 
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decisions. Specifically, B2B buyers not only choose what, when, and how much to buy, but also 

decide on how to buy. In B2B settings, buyers often choose whether to ask for a price quote 

(offering the seller the opportunity to provide a price quote) or whether to order directly from the 

seller without asking for a price. Such requests for a price quote allow sellers to observe demand 

and price sensitivity even when a sale is not made (i.e., when a bid is made and the buyer rejects 

the bid). Such data are rarely observed in B2C settings (Khan et al. 2009). Similarly, the buyer’s 

decision to order directly from the seller (without observing the price) indicates the strength of 

relationship. Our modeling approach accommodates this unique aspect of the buying process.  

Finally, decision makers (buyers and sellers) in B2B settings are often assumed to behave 

rationally (Reid and Plank 2004). Thus, while behavioral pricing theory suggests that internally 

constructed reference prices play an important role in customer purchase decisions, and that loss 

aversion should be considered in modeling reference price effects (Kalyanaram and Winer 

1995), it is not clear whether such behavioral effects are operant in the B2B domain.  

In this paper, we develop a modeling framework that incorporates these distinguishing 

aspects of the B2B environment. Our framework models customer decisions on each potential 

purchasing occasion in an integrated fashion using different model components. It uses 

hierarchical Bayesian copulas (Nelsen 2006; Pitt et al. 2006; Trivedi and Zimmer 2007) to 

flexibly model the four decisions (purchase timing, purchase amount, quote request, and quote 

acceptance) jointly. It accounts for heterogeneity in customer preferences and behaviors to 

facilitate targeting, incorporates asymmetric reference price effects and other behavioral effects, 

handles price endogeneity using a Bayesian analog of control functions (Park and Gupta 2009; 

Petrin and Train 2010), and accommodates purchase dynamics and the short and long-term 

effects of pricing using a multivariate non-homogeneous hidden Markov model (Montoya et al. 

2010; Netzer et al. 2008; Schweidel et al. 2011).  

We apply our framework using longitudinal transaction data from an aluminum retailer 

selling to industrial buyers. We identify two latent buying behavior states: a vigilant state 

characterized by high customer price sensitivity and a cautious approach towards ordering, and a 
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relaxed state that is characterized by more direct orders and lower price sensitivity. We also find 

strong evidence for asymmetric reference price effects including loss aversion and gain seeking. 

Consistent with the hedonic adaptation theory (Frederick and Lowenstein 1999), we find that 

buyers not only weight price losses more than gains, but also take longer to adapt to losses than 

to gains. To the best of our knowledge, this is the first empirical evidence for the hedonic 

adaptation theory using secondary data. We also find that the proposed model exhibits superior 

out-of-sample predictive ability relative to several benchmark models. 

We illustrate how our model can be used for computing optimal individual targeted 

prices that maximize long-term customer value. The optimal pricing policy balances between 

short- and long-term perspectives. In the short-term, the price is determined by the tradeoff 

between converting orders to sales and the desire to increase margins. In the long-term, the seller 

balances the wish to reduce prices to retain customers in the relaxed state and the wish to keep 

prices high to avoid reducing internal reference prices. The optimization indicates that the 

optimal dynamic targeted pricing policy can increase the seller’s profitability by as much as 52% 

compared to the status-quo. We also use a counterfactual analysis to examine the firm’s optimal 

pricing policy in the presence of a volatile aluminum commodity market. Volatility in the 

aluminum commodity market alters the cost structure for the seller while also changing the 

external reference point for buyers. Consistent with the dual entitlement principle, our simulation 

results indicate that when the commodity prices increase, the seller should pass to the buyers 

much of the cost increase. However, it can “hoard” some of the benefits of a cost decrease when 

the commodity market prices decrease.  

In summary, our research pushes forward the pricing literature in several directions. On 

the methodological front, it provides a state-of-the-art and unique hierarchical Bayesian 

framework that weaves together a multivariate non-homogenous HMM, copulas, heterogeneity, 

and control functions to effectively capture relevant aspects of the B2B settings. More 

importantly, on the substantive front, it yields insights about how the short- and long-term effects 

of behavioral demand parameters such as loss aversion, reference price, and latent buying 



5 
 

behavior states shape customer demands in what is traditionally considered to be “rational” 

purchasing activity. Furthermore, our findings provide strong evidence for the potential to 

employ value-based pricing policies, even in a traditional B2B industry characterized by cost-

plus pricing practices. 

The rest of the paper is organized as follows: Section 2 highlights the challenges and 

opportunities in investigating pricing decisions in B2B settings. Section 3 describes the data  

from an industrial metal retailer. Section 4 outlines the modeling framework. Section 5 illustrates 

the application of our modeling framework to the data. Section 6 describes the dynamic targeted 

pricing optimization based on the estimated model and Section 7 concludes by discussing 

practical implications, theoretical contributions, and future directions. 

2. Targeted Pricing Decisions in B2B Settings 

Our research lies at the intersection of multiple research streams involving pricing in B2B 

markets, targeted pricing, pricing dynamics and reference prices. In this section, we briefly 

review these literatures.  

2.1 Pricing in B2B Markets 

The majority of the research on B2B pricing is conceptual and survey based (Johnston and 

Lewin 1996), and scant attention is given to quantitative pricing models. The overall neglect 

could stem from conflicting views about the role and importance of pricing relative to other 

attributes in B2B contexts (see Lehmann and O’Shaughnessy 1974; Wilson 1994 and 

Hinterhuber 2004). In this paper, we empirically investigate the multifaceted impact of pricing 

using data from a B2B seller. 

2.2 Dynamic and Individually Targeted Pricing 

Targeting and customization are emerging topics in academic research and are immensely 

relevant to the world of practice. The empirical literature on targeting, however, has primarily 

focused on non-price marketing actions such as catalog mailing (Gönül and Shi 1998; Simester 

et al. 2006), coupons (Rossi et al. 1996; Shaffer and Zhang 1995), digital marketing campaigns 
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(Ansari and Mela 2003), B2B communication contacts (Venkatesan and Kumar 2004) and 

pharmaceutical detailing and sampling (Dong et al. 2009; Montoya et al. 2010) as these 

marketing actions are viewed as being naturally customizable and targetable at the individual 

level. In contrast, empirical research on individually targeted pricing has been relatively sparse, 

possibly due to the logistical, ethical, and legal issues concerning price discrimination in 

traditional (B2C) settings. Exceptions include Zhang and Krishnamurthi (2004) and Lewis 

(2005) who study pricing and promotion targeted at the segments level. Khan et al. (2009) 

demonstrate the importance of individually targeting consumers and the value of both inter-

temporal and cross-sectional targeting for a mix of promotional activities. The authors note that 

one of the limitations of their study is the inability to observe purchase intents that did not result 

in a purchase. They also highlight the logistical problem of individually targeted pricing in the 

B2C brick and mortar context.  

Dynamics can be incorporated in pricing models using different mechanisms. Winer 

(1986) uses reference prices to capture dynamics. Greenleaf (1995) and Kopalle et al. (1996) 

study the implications of reference prices for the firm's dynamic pricing policy, Lewis (2005) 

incorporates customers' forward looking expectations about future prices, and Chan and 

Seetharaman (2004) model the relationship between state-dependence and pricing decisions. We 

differ from these studies on several aspects. First, we use a multivariate non-homogenous HMM 

to allow for dynamic pricing and to capture the enduring impact of reference prices. Second, we 

leverage these dynamics to target prices both at the individual level, as well as temporally, over 

repeated transactions for the same customer. Finally, most pricing models investigate the effect 

of the firm’s pricing on brand choices or on a single purchase decision. In contrast, we 

investigate the impact of the seller's pricing policy and the resulting reference prices on a 

sequence of inter-related customer decisions that are typical of B2B environments.  

2.3 Reference Prices in Customer Buying Behavior 

The notion that consumers use reference prices in assessing the attractiveness of offers is well 

established within marketing (Hardie et al. 1993; Kalyanaram and Winer 1995; Kalwani et al. 
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1990; Krishnamurthi et al. 1992; Winer 1986). The literature distinguishes between “internal” 

and “external” reference prices (Mayhew and Winer 1992). External reference prices (e.g., 

MSRP, and prices of other brands) are generally observable and common to all customers, 

whereas internal reference prices are assumed to be individual-specific and are often constructed 

based on the customer’s observed prices on previous purchase occasions. Briesch et al. (1997) 

compares several external and internal reference price mechanisms and concludes that internal 

reference prices have greater empirical support. 

 A rich body of experimental and empirical work demonstrates the behavioral 

underpinnings of reference price effects (Kalawani et al. 1990; Wedel and Leeflang 1998). 

Erdem et al. (2010), in contrast, proposes a “rational” explanation for reference price effects 

based on quality signaling and price expectations. In behavioral pricing, the observed price in 

relation to a reference price is often encoded as either a loss or a gain and can thus have an 

asymmetric impact on brand choice (Kalwani et al. 1990; Putler 1992), purchase timing (Bell 

and Bucklin 1999), and purchase quantity (Krishnamurthi et al. 1992).  

 Despite the voluminous literature on reference prices, these have found little application 

in B2B pricing models based on the presumed "rationality" of B2B decision makers 

(Kalayanaram and Winer 1995). Internal reference prices, however, can play an important role in 

B2B purchasing because transactions are formally recorded by most buyers and relationships are 

typically long-term in nature. In addition, we know little about the impact of ignoring reference 

prices on targeting policy and performance as they have not been studied in conjunction with 

targeted pricing. We further the reference price literature along several dimensions by studying 

the asymmetric impacts of internal reference prices in multi-decisional contexts which permit 

first-degree and inter-temporal price discrimination. We also investigate the possible long-term 

effects of reference prices in a B2B context. Next, we describe our dataset and the business 

context in which the seller operates.  
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3. Data 

Our data come from an East Coast local aluminum retailer that supplies to industrial clients such 

as machine shops and fabricators operating in its geographical trading area. This dataset is 

typical of what is found in B2B selling in commodity markets. The data contains customer-level 

information on purchase events over a 21 month period from January 2007 to September 2008. A 

purchase event begins with the need for a certain quantity at a given point in time. Given this 

need, the buyer either places a direct order without asking for a price quote, or may request a 

price quote (usually via the phone or fax). For example, a typical direct order may be received by 

the morning via a fax saying: “Send me four aluminum sheets A inch by B inch and thickness of 

C inch by tomorrow afternoon”. Direct orders are generally fulfilled immediately and the 

customer is charged a price determined by the seller. Alternatively, if the customer requests a 

quote (i.e., an “indirect order”) the firm bids for the customer’s business, and can only “win” the 

business if the customer accepts the quoted price.1 Thus, in our setting, purchase events include 

not only completed transactions but also lost transactions involving quotes that were not 

accepted, thus allowing for a better understanding of customer price sensitivity.  

 The company has a large number of SKUs that are defined based on the shape, thickness 

and customizable size of the aluminum. Furthermore, the wholesale cost of aluminum changes 

on a daily basis following the London Metal Exchange (LME). Therefore, as is typical in this 

industry, the company does not maintain a price list and determines the price to charge or quote 

on a case by case basis. Because of the variation in order quantities and the large number of 

SKUs, a common measure for prices in this industry is a “price per pound” measure that 

incorporates the cutting costs and complexity of the order. As is typical of most customer 

relationship management (CRM) datasets in B2B settings, our dataset does not include 

                                                 
1 Discussions with the management and sales personnel in the company that provided the data revealed that 
negotiations, beyond the request for the price quote and the firm initial bid, are not common. Analysis of the price 
and bid quantity relative to price and quantity on the order invoice confirmed that both price and quantity rarely 
changed from the original bid to the final order. This provides empirical evidence for minimal negotiation beyond 
the bid process.  



9 
 

information about the competition. However, unfulfilled indirect orders provide an indirect 

signal for a purchase that went to the competition.     

Our sample contains 1,859 customers for whom we observe at least 7 purchase events 

(quotes or orders) in the data period (see Tables 1 and 2 for summary statistics of the data). On 

average, a customer in our sample engaged in 23.6 purchase events during the span of 21 

months. Of these, 53% were direct orders on which no price quote was requested. The relatively 

large proportion of direct orders is consistent with Shipley and Jobber (2001) who argue that in 

B2B settings, customers’ needs are often urgent and account for a small proportion of the buyer’s 

total expenses, leading to relatively low price sensitivity. Of the indirect orders, 47% were won 

by the seller.  

An average purchase event involves 457 lbs of aluminum with an average price of 

$3.24/lb. Table 2 shows that 1) direct orders tend to be smaller, suggesting the possibility that 

buyers are less price sensitive when ordering smaller quantities; 2) customers are heterogeneous 

in terms of their metal needs and transactions with the firm; 3) customers exhibit different 

propensities to order directly without asking for a price quote, suggesting variation in their 

attitudes and latent relationships with the firm; 4) about half of the orders are direct (which result 

in a sale regardless of the price charged). This suggests that the firm might be tempted to charge 

“any” price on such orders. However, such pricing behavior can have negative long-term 

consequences. We now describe our modeling framework that is designed to account for the 

above aspects of our dataset. 

4. Model 

We model a sequence of purchase events for each customer. A purchase event is characterized 

by four interrelated customer decisions: 1) when to buy, 2) how much to buy, 3) whether to order 

directly without asking for a price quote, which always results in a purchase, or request a quote, 

hence allowing the seller to bid for business, and 4) whether to accept the quote if a bid was 

made by the seller. We can write the vector of observed customer behaviors for customer i at 
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purchase event j as: ( , , , )ij ij ij ijq t b wijy , where ijq is the quantity requested or ordered, ijt is the 

time, in weeks, since the last purchase event (i.e., the inter-purchase-event time), and ijb  and ijw  

are the binary quote request and quote acceptance decisions, respectively. The seller observes the 

buying behavior and pricing history for each customer and the marketing environment before 

deciding on the unit price pij to charge customer i at purchase event j.  

To model customer dynamics over repeated purchase events we allow the customer to 

transition between different latent buying behavior states that differentially impact the four 

customer decisions. The seller’s past pricing decisions may affect the customer’s transition 

between states. For example, a customer who was charged a high price may be more likely to 

transition from a “relaxed" or trusting state that is characterized by a high propensity to order 

directly and a low price sensitivity, to a "vigilant" or evaluative state that reflects a higher 

propensity to request quotes, coupled with a higher price sensitivity. 

We capture such dynamics using a multivariate non-homogeneous HMM. In the HMM, 

the joint probability of a sequence of interrelated decisions up to purchase event j, for customer i, 

 ,...,i1 i1 ij ijY y Y = y , is a function of three main components: (1) the initial hidden state 

membership probabilities iπ  (2) a matrix of transition probabilities among the buying-behavior 

states , i j-1 jΩ , and (3) a multivariate likelihood of the interrelated customer decisions conditional 

on the customer’s buying-behavior state | ( , , , )ij s is ij ij ij ijL f q t b w . We describe our formulation of 

each of these components next. 

4.1 Initial State Distribution   

Let s denote a buying-behavior state ( 1,2,...,s S ). Let is be the probability that customer i is in 

state s at time 1, where 0 1is   and 
1

1
S

iss



 . We use S-1 logit-transformed parameters to 

represent the vector containing the initial state probabilities.  

4.2 The Markov Chain Transition Matrix   

We model the transitions between states as a Markov process. Each element of the transition 

matrix ( , i j-1 jΩ ) can be defined as 1( | )ijss ij ijP S s S s     , the conditional probability that 

customer i moves from state s at purchase event j-1 to state s at purchase event j, and where 
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'0 1ijss   , 's s , and ''
1ijsss

  . As the transition probabilities are influenced by the seller’s 

pricing decisions at the previous purchase event j-1, we define: 

          

' 1

1
1

ijss S

s

e

e
 






ij-1 is

ij-1 is

x 'γ

x 'γ ,     (1) 

where, ij-1x is a vector of covariates (e.g., price or reference price) affecting the transition 

between states and isγ  is a state- and customer-specific vector of response parameters. 

4.3 The State Dependent Multivariate Interrelated Decisions  

Conditional on being in state s at purchase event j, the customer makes the four interrelated 

decisions. These decisions are unconditionally interrelated as they all depend on the customer’s 

latent state. To allow these to be conditionally dependent, we use a copula approach (Danaher 

and Smith 2011; Trivedi and Zimmer 2007). Copulas enable us to model each decision flexibly 

using appropriate marginal distributions while at the same time allowing for interdependence.  

Given that customer i is in a latent state ijS s  on purchase event j, we can factor the 

state-conditional discrete-continuous joint likelihood, |ij sL , for the four interrelated behaviors as:2 

| ( , , , ) ( , ) Pr ( , | , ).ij s is ij ij ij ij is ij ij is ij ij ij ijL f q t b w f q t b w q t     (2)   

In the above, we assume that the joint decisions on timing and quantity stem primarily from the 

customer's need for the product. As these decisions occur prior to the decision to request a quote 

or order directly, they impact the latter set of decisions. Because, the decision to accept or reject 

a quote ( ijw ) occurs only when the customer decides to request a quote rather than order directly 

from the seller ( 1ijb  ), we specify the joint probability of ijb  and ijw
 
using a selectivity 

approach 

          
1Pr ( , | , ) Pr ( 0 | , ) Pr ( | 1, , ) Pr ( 1| , )

bb
ijij

is ij ij ij ij is ij ij ij is ij ij ij ij is ij ij ijb w q t b q t w b q t b q t
        

,  (3)
 

where, b
ij equals 1, if purchase event j for customer i is a quote request and 0, otherwise. 

In modeling the time between purchase events, ijt , the last observation for each customer, 

*
ijt , is censored because of the fixed time horizon of the dataset. Let  *

ijS t  be the survival 

                                                 
2 To avoid clutter, we describe first the model in the general distribution form, and then outline the particular 
distributions and parameterizations that we used.   
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function for the censored observation, and let c
ij be a censoring indicator, which equals 1 if 

observation j for customer i is censored, and 0, otherwise. Accordingly, accounting for censoring 

and inserting Equation (3) into Equation (2) we can re-write Equation (2) as follows 

|

1
1*

( , , , )

( ) ( , ) Pr ( 0 | , ) Pr ( | 1, , ) Pr ( 1| , ) .

c
ijbc b

ijij ij

ij s is ij ij ij ij

is ij is ij ij is ij ij ij is ij ij ij ij is ij ij ij

L f q t b w

S t f q t b q t w b q t b q t


 




 

        

   (4) 

Next, we describe the distributional assumptions for each of the four decisions and provide 

details about the copula approach.  

4.3.1 Modeling Quantity and Time between Events. We use a bivariate copula to model the 

joint density of quantity and time between events, ( , )ij ijf q t . The copula weaves together the 

univariate marginal distributions into a joint distribution. That is, the joint CDF of ijq  and ijt
 
is  

        ( , ) ( ( ), ( ))is ij ij isq ij ist ijF q t C F q F t ,     (5) 

where, C( ) is a copula function, and Fisq and Fist are the c.d.f’s for the quantity and inter-

purchase-event time variables, respectively. The joint density can then be written as 

                ( , ) ( ) ( ) [ ( ), ( )]is ij ij isq ij ist ij iqt isq ij ist ijf q t f q f t H F q F t ,   (6) 

where, isqf  and istf  are the univariate marginal densities, and [.,.]iqtH  is the double derivative of 

the copula function C( ) with respect to the two marginal c.d.f’s. We condition on the state 

throughout to highlight that the distributions are state dependent. 

While many different marginal distributions can be used, here, we assume that the 

purchase-event times follow a log-logistic distribution (Lancaster 1990, pp. 44; Kumar et al. 

2008) because of its flexibility in accommodating both monotonic and non-monotonic hazards. 

The p.d.f and c.d.f of the log-logistic are given by  

' 1

' 2
( )

(1 )

t
ij s

t
ij s

s ij
is ij

ij

e t
f t

e t

 

 

 






ij tsi

ij tsi

x β

x β
, ( )

1

t
ij s

t
ij s

ij
is ij

ij

e t
F t

e t

 

 








ij tsi

ij tsi

x β

x β
,   (7)  

where, 0s  , is a shape parameter, tsiβ  is vector of coefficients for customer-level, purchase-

event specific covariates such as prices or reference prices, and t
ij  represents an unobserved 
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shock associated with the inter-purchase-event time. The random shock t
ij  is assumed to be 

correlated with the unobserved shock of the pricing equation to account for possible endogeneity 

(see section 4.4).  

We assume that quantities requested and/or ordered follow a lognormal distribution with 

p.d.f and corresponding c.d.f given by 

 

log '
( )

( )

q
ij ij

is ij
ij

q

f q
q







 



ij qsix β

 , 
log( ) '

( ) ( )
q

ij ij
is ij

q
F q




 
  ij qsix β

,          (8) 

where, qsiβ is a vector of coefficients for a set of customer-level and purchase-event specific 

covariates that affect the mean quantity, q
ij  is an unobserved random shock that is correlated 

with the unobserved shock in the pricing equation that is discussed below,   is the scale 

parameter, and   and   represent the p.d.f and c.d.f of the standard normal distribution, 

respectively.  

There are many families of copulas which differ in the nature of the dependence they 

represent. We use the Frank copula (Frank 1979; Trivedi and Zimmer 2007) to model the 

interdependence between quantity and inter-purchase-event times because it covers the entire 

domain between the Frechet-Hoeffding bounds and thus allows for both positive and negative 

interdependence. The Frank copula for quantity and inter-purchase-event time can be written as  

     

( ) ( )1 ( 1)( 1)
[ ( ), ( )] ln 1

1

qt isq ij qt ist ij

qt

F q F t

isq ij ist ij
qt

e e
C F q F t

e

 



 



  
     

,   (9) 

where, the parameter qt  captures the interdependence between the quantity and inter-purchase-

event time decisions. For 0qt  the interdependence between quantity and inter-purchase-event 

time is positive, and for 0qt   
the interdependence is negative.  

4.3.2 Modeling Customer Quote Request and Acceptance Decisions. Customer i’s binary 

quote request decision on purchase event j ( ijb ) is governed by an underlying latent utility *
ijb  

such that:   
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*1, if 0  (indirect),

0,   (direct).
ij

ij

b
b

otherwise

 
 


 

Similarly, conditional on a price quote, customer i’s binary decision to accept or reject the quote 

on purchase event j ( ijw ) is driven by the latent utility *
ijw  such that: 

* *

* *

1,                if 0 & 0,  

0,               if 0 & 0,

,   otherwise.

ij ij

ij ij ij

b w

w b w

unobserved

  
  



 

The joint distribution of ijb and ijw  is relevant when a bid is made (i.e., bij = 1). For such quote 

orders, we can distinguish between those that were accepted (the seller “wins” the bid; 1ijw  ) 

and those that were rejected (the seller “loses” the bid; 0ijw  ). For accepted orders, we have  

* * * *Pr ( 1, 1| , ) 1 Pr ( 0) Pr ( 0) Pr ( 0, 0)is ij ij ij ij is ij is ij is ij ijw b t q b w b w          .      (10) 

Similarly, for rejected bids, we have 

               

* * *Pr ( 0, 1| , ) Pr ( 0) Pr ( 0, 0)is ij ij ij ij is ij is ij ijw b t q w b w       .    (11) 

We model the joint probability * *Pr ( 0, 0)s ij ijb w  in Equations (10) and (11) using the Frank 

copula such that,  
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e

 
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 



  
        

,  (12) 

where, the parameter bw captures the interdependence between the quote request behavior and 

quote acceptance decision. For the marginal distributions, we assume that each of the latent 

variables, *
ijb  and *

ijw are distributed logistic. Thus,  

* 1
Pr ( 0)

1
b
ij

is ijb
e 

 
 ij bsix β

     
and      * 1

Pr ( 0)
1

w
ij

is ijw
e 

 
 ij wsix β

.       (13) 

The vector of parameters bsiβ  and wsiβ  relate the quote request and quote acceptance latent 

utilities, respectively, to a set of covariates such as price, reference price and time since last 

order. b
ij  and w

ij  are the unobserved shocks associated with the quote request and quote 
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acceptance decisions, respectively. These are assumed to be correlated with the unobserved 

shock of the pricing equation discussed subsequently. 

Inserting equations (6)-(13) into equation (4) we get the full likelihood of observing the 

four interrelated customer decisions conditional on the customer’s state.  

4.4 The HMM Likelihood Function 

Given the Markovian structure of the model, the likelihood of observing a set of joint customer 

decisions at purchase event J is dependent on all decisions up to that event. The likelihood of 

observing the customer’s decisions over J purchase events ( , ,...,i1 i2 iJY Y Y ) can be succinctly 

written as (McDonald and Zucchini 1997) 

   , ,( ,..., )iJL P    i1 i1 iJ iJ i i1 i 1 2 i2 i J-1 T iJY = y Y = y πM Ω M ...Ω M 1 ,      (14) 

where, iπ is the initial state distribution described in Section 4.1, , i j j+1Ω  is the transition matrix 

described in section 4.2, ijM  is a SS diagonal matrix with the elements |ij sL from Equation (4) 

on the diagonal, and 1  is a S1 vector of ones.  

To ensure identification of the states, we restrict the probability of quote request to be 

non-decreasing in the buying behavior states. We impose the restriction 01 02 0...b i b i b Si        

by setting 0 01 02
exp( )

s

b si b i b s is
   

  ; s=2,…,S. As both the intercepts and the response 

parameters are state-specific, we impose this restriction at the mean of the vector of covariates, 

by mean-centering ijx . To avoid underflow, we scale the likelihood function in Equation (14) 

following the approach suggested by MacDonald and Zucchini (1997, p. 79).  

4.5 Recovering the State Membership Distribution   

We use the filtering approach (Hamilton 1989), to determine the probability that customer i is in 

state s at purchase event j conditioned on the customer’s history 

 , , |( | , , .., ) /ij ij s ijP S s L L  i1 i2 ij i i1 i 1 2 i2 i j-1 t•sY Y Y π M Ω M ...Ω ,          (15) 

where, i,j-1j.s is the sth column of the transition matrix i,j-1j , and, Lij is the likelihood of the 

observed sequence of joint decisions up to purchase event j from Equation (14).  
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4.6 The Control Function Approach to Price Endogeneity 

It is possible that the seller’s pricing decisions are based on unobserved factors that also impact 

the buyers’ decisions. For example, the seller can target each customer differentially based on 

private information it has that is not observed by the researcher. In such case, price will be 

correlated with the unobserved components (the ' s ) of the four distributions. Ignoring this 

endogeneity can result in misleading inferences about the price sensitivities of customers (Villas-

Boas and Winer 1999). We use a Bayesian analog of the control function approach to account for 

price endogeneity (Park and Gupta 2009; Rossi et al. 2005). Specifically, we express price as a 

function of an observed instrumental variable ijz  that is correlated with price, but is uncorrelated 

with the unobserved factors impacting the four decisions. Formally, we have 

1 2 ,ij ij ijp z              
(16) 

where, ij  are unobserved factors influencing the pricing decision. We assume that ij is 

distributed jointly bivariate normal with each of , { , , , }l
ij l t q b w  in Equations (7), (8), and (13) 

to account for endogeneity. For each of the four decisions, the bivariate normal distribution can 

be written as 
2

2

0
( , ) ~ ,     { , , , },

0
p pll

ij ij
pl l

f MVN l t q b w
 

 
 

   
          

      (17) 

where, 2
p  is the variance of ij , 2

l  is the variance for the random shock l
ij , and ,p l  is the 

covariance between ij  and l
ij . We use the wholesale price as an instrument for price ( ijz in 

Equation (16)). The wholesale price is the seller’s wholesale cost, that is, the cost that the seller 

pays to the mills for the metal. This is observed by the seller but not by the buyers. 

Conversations with the management team indicate that the salespersons observe the wholesale 

cost on their computer screen and rely heavily on it when setting the price. Wholesale price has 

been commonly used as an instrument for price (e.g., Chintagunta 2002).  
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5. Model Estimation and Results 

In the previous section, we focused on the overall modeling framework. We now describe how 

this is instantiated in our application. We also report and discuss the parameter estimates from 

our model.   

5.1 Description of Variables 

Asymmetric Reference Price Effects - We define the reference price for customer i, at purchase 

event j, as a quantity weighted average of the customer’s past observed prices (in $/lb)3, i.e.,  

1 1

1 1

_ _ /
j j

ij ik ik ik
k k

reference price quantity price lb quantity
 

 

   
    
   
   , 

where, _ ijprice lb  is the price per pound observed by customer i in purchase event j. The quantity 

weighting reflects that customers attend closely to larger orders relative to smaller ones.  

Consistent with the rich literature on behavioral pricing, we incorporate asymmetric reference 

price effects (Putler 1992) using “gain” and “loss” variables: 
 

_ _  ,   If  _ _ ,
  and

0                                                 ,    Otherwise. 

ij ij ij ij

ij

reference price price lb price lb reference price
gain

 
 
    

_ _  ,   If  _ _ ,

0                                                 ,    Otherwise. 

ij ij ij ij

ij

price lb reference price price lb reference price
loss

 
 
  

Commodity market - We use the daily aluminum spot prices on the London Metal Exchange 

(LME) to control for the fluctuations in commodity market. The LME also serves as an external 

reference price. We define,
  

ijlme  = the aluminum spot price (dollars per metric ton) on the LME at purchase event j, for 

customer i, and  

                                                 
3 We tested several alternative specifications of the reference price variable including time-weighted reference 
prices, and the external reference price from the commodity market. The quantity weighted reference price resulted 
in the best model fit. Incorporating time decay to the reference price formulation did not result in significant 
improvement in model’s fit.  
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_ ijlme volatility  = the volatility of the aluminum spot price on the LME, calculated as the 

standard deviation of the LME daily returns over the seven trading days prior to purchase event j 

for customer i. 

We now describe how these variables are included in each of the customer decision’s 

components.  

5.1.1 The State Dependent Decisions - We include the following variables in the state-

dependent components for the four decisions: 

1. Purchase-event Times: We expect the timing of the purchase-event to depend on the 

previous quantity because of inventory effects and on past internal reference price effects. 

Thus, ijx  in Equation (7) includes the covariates: 1ijgain  , 1ijloss  ,and
 1ijquantity  . 

2. Quantity: We expect that the price gain (loss) experienced on the previous purchase event 

and the current level and volatility of the commodity market to impact requested quantity. 

Thus, xij in Equation (8) includes the covariates: 1ijgain  , and 1ijloss  , ijlme , and 

_ ijlme volatility .  

3. Quote Request: We expect that customers would have a lower propensity to order directly 

when the quantity desired is large, when a long time has elapsed since the previous purchase 

or when the market conditions are volatile. Furthermore, the internal reference price effects 

experienced on the previous purchase event could impacts the decision to request a quote. 

Thus, ijx  in Equation (13) includes: ijt , ijquantity , 1ijgain  , 1ijloss  , ijlme , and 

_ ijlme volatility  

4.  Quote Acceptance: We predict that the likelihood of accepting a quote will be higher when 

the quantity ordered is small, purchases are frequent, and the customer experiences a price 

gain. We also expect the gain and loss effects to be magnified for larger orders. 

Furthermore, the decision could be affected by the commodity market conditions. Thus, ijx in 

Equation (13) includes: ijt , ijquantity , ijgain , ijloss , ij ijgain quantity , ij ijloss quantity , 

ijlme , and _ ijlme volatility . 
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5.1.2 The Non-Homogenous Transition Matrix - The “gain” or “loss” experienced on the 

previous purchase event can affect the buyer’s evaluation (or re-evaluation) of the relationship 

with the seller and trigger a transition to a different buying behavior state thereby affecting 

purchases in the long-run. Thus, 1ijx  in Equation (1) includes: 1ijgain  , and 1ijloss  . 

5.2 Heterogeneity Specification 

We allow the coefficients for the reference price effects and the parameters that govern the 

HMM dynamics to vary across customers. This facilitates targeting, properly accounts for 

reference price effects and is also crucial for empirically distinguishing dynamics from cross-

customer heterogeneity (Heckman 1981). Specifically, we allow all the transition matrix 

parameters, as well as the four intercepts and the coefficients of the reference price related 

variables, (i.e., ijgain , 1ijgain  , ijloss , 1ijloss  , ij ijquantity gain , ij ijquantity loss , ijlme , 

_ ijlme volatility ) to vary across customers. For parsimony, all other parameters in the model are 

assumed to be invariant across customers (see column 3 in Table 4 for a full list of the random- 

and fixed-effect parameters). We also restrict the Frank copula dependence parameters ( qt  and 

wb ) and the scale parameter of the lognormal distribution ( ) to be the same across the latent 

states. 

5.3 Estimation Procedure 

We use a hierarchical Bayesian approach based on Markov Chain Monte Carlo (MCMC) 

methods for inference. In particular, we follow Netzer et al. (2008) and use the HMM likelihood 

function in Equation (14) in conjunction with the pricing equation to create a joint likelihood 

function. The inherent complexity of the HMM often leads to significant autocorrelation among 

the draws. We therefore use the adaptive Metropolis procedure in Atchadé (2006) which 

significantly improves mixing and convergence. We use proper but diffuse priors for all 

parameters. Details of priors as well as full conditionals are available from the authors. We use 

the first 18 months of data for estimation and the last three months for validation purposes.  Our 

results are based on the last 250,000 draws from an overall MCMC run of a million iterations. 
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Convergence was ensured by monitoring the time-series draws from the full conditional 

distributions. 

5.4 Model Fit and Predictive Ability 

We compare the fit and predictive ability of the proposed model (Full model) to that of four 

benchmark models which vary with respect to a) the extent of interdependence among the four 

decisions, b) the extent of heterogeneity, c) the degree of dynamics, and d) whether they account 

for price endogeneity. All our benchmark models rely on the same marginal distributions for the 

four decisions as the proposed model. For all models, we use a Bayesian approach for inference. 

The benchmark models are: 

1) Nohet: This model ignores the heterogeneity in the Full model and thus differs from it in that 

all parameters are assumed to be invariant across customers. A comparison of this model with 

the Full model therefore allows us to assess the importance of modeling heterogeneity. 

2) Indep: This is a single state heterogeneous model in which the distributions for the four 

decisions are independent. Thus, this model ignores the interdependence that is created from the 

copulas and the HMM. A comparison with the Full model can indicate the value of modeling the 

decisions jointly and of capturing relationship dynamics.  

3) NoDyn: In this model we ignore the two sources of dynamics present in the Full model: the 

HMM specification and the reference price effects. We therefore estimate a single state (i.e., no 

HMM) model in which the reference prices are replaced with actual prices. Comparing this 

“static” model to the proposed model allows us to assess the value of capturing dynamics.  

4) NoEndo: This model is identical to the Full model except that prices are considered 

exogenous. Thus, this model does not have the Bayesian control function component. A 

comparison of this model to the Full model can highlight the extent of price endogeneity as well 

as the perils of ignoring it. 

We compare the fit and predictive ability of the five models using the Log Marginal 

Density (LMD) and the Deviance Information Criterion (DIC) on the calibration sample, and the 

validation log-likelihood on the validation sample. We also assess the component-specific fit and 
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prediction using the root mean squared error (RMSE) and the mean absolute deviation (MAD) 

between the predicted and observed values of the four outcome variables and the hit-rates for the 

binary quote-request and conditional quote acceptance decisions within the calibration and 

validation samples.  

Table 3 presents the model comparison statistics for the five models. We see that the Full 

model outperforms the benchmark models on both the component-specific and the overall 

measures for both samples. The relatively poor performance of the no-heterogeneity model 

indicates that the extent of buyer heterogeneity in our data is substantial and suggests an 

opportunity for individually targeted pricing. Similarly, accounting for dynamics improves the 

representation and prediction of buying behavior, suggesting that inter-temporal targeting may be 

advantageous. In contrast, accounting for price endogeneity results in only a marginal 

improvement. This is consistent with the use of a “cost-plus” pricing strategy by the seller. A 

regression of price on wholesale cost yields an R-squared of 0.84. We now discuss the parameter 

estimates of the proposed model.  

5.5 Parameter Estimates  

In this section we discuss the parameter estimates of the Full model with two latent states. 

Models with a larger number of HMM states resulted in worse performance (higher DIC). 

5.5.1 The HMM States. Table 4 contains the posterior means, standard deviations and the 95% 

posterior intervals for the Full model. Recall that all covariates are mean-centered, thus, the 

intercept of each equation captures the average response tendency. A comparison of the 

parameters across the two states indicates that customers in State 1 are more likely to request a 

price quote, but are less likely to accept the quote relative to customers in State 2. Also, 

customers in State 2 are more sensitive to reference price effects. These customers exhibit 

stronger loss aversion in the inter-purchase-event time, quote request and quote acceptance 

decisions and stronger gain seeking in the quantity decision. Customers who are in State 2 at a 

given purchase event also tend to be more responsive to the commodity market (LME), and pay 
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closer attention to the characteristics of the order itself (quantity and inter-purchase-event time) 

in making their decisions.  

Overall, this multidimensional view of the two states (see a summary of the two states in 

Table 5) implies that State 2 characterizes a more cautious approach towards ordering, whereas, 

customers in State 1 appear more relaxed in their relationship with the seller. We therefore call 

State 1 the “relaxed” state and State 2 the “vigilant” state.  Customer trust, which is an 

important facet in B2B relationships (Morgan and Hunt 1994), is the most likely underlying 

mechanism that governs the existence of these two states. Using the perspective of regulatory-

focus theory (Higgins 1997), we can characterize customers in  the vigilant state as more 

“prevention focused,” i.e., focusing on avoiding price losses, and those in the relaxed state as 

being more “promotion-focused”, i.e., concentrating more on gains and price savings.  

5.5.2 Customer Dynamics. Customers can transition between the two states over time, thus 

creating long-term dynamics. The parameter estimates in Table 6 and their transition matrix 

representation in Table 7 together illustrate these dynamics.  The central matrix in Table 7 shows 

the transition matrix when the price equals the reference price (i.e., the buyer’s quantity weighted 

average price). One can see that the states are relatively sticky. The likelihood of remaining in 

the vigilant state is 92%. However, the seller can use its pricing policy to affect customer 

transitions between the states.  

Comparing the left matrix in Table 7 with the central matrix, we see that experiencing a 

10% price decrease (“gain”) in the previous purchase event increases the probability of moving 

from the vigilant to the relaxed state by almost 2% and also increases the chance of remaining in 

the relaxed state by 3%. This suggests that when customers perceive that they are treated well, 

they are more likely to transition to or remain in a state of more favorable relationship with the 

firm. In contrast, the right matrix in Table 7 shows that a 10% price increase (“loss”) in the 

previous purchase event increases the likelihood that the customer will transition to the vigilant 

state by almost 7% and also increases the likelihood of staying in the vigilant state by 3.5%, 

which in turn, translates to further increased sensitivity to losses. Thus, a price increase may have 
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a long-term effect by transitioning the customer to a (sticky) state of increased price sensitivity. 

It should be noted that Table 7 presents transition matrices computed at the posterior mean. Our 

MCMC estimation permits a separate transition matrix for each buyer. We leverage this 

heterogeneity in developing a targeted pricing policy in Section 6.  The average loss aversion in 

the impact of reference prices on the transition between the states ranges from 1.5 to 2.5, 

consistent with the loss aversion ratios commonly reported in B2C applications. We now look at 

the extent of interdependence among the decisions. 

5.5.3 Interdependent Decisions. The parameters of the Frank copula in Table 6 indicate 

significant and substantial positive dependence between the quantity and inter-purchase-event 

time decisions, and negative dependence between the quote request and quote acceptance 

decisions. The latter negative correlation indicates selectivity (Heckman 1981) and implies that 

factors that increase the likelihood of quote requests also result in lower quote acceptance rates, a 

kind of a “double jeopardy” for the firm. The positive correlation between the inter-purchase-

event time and quantity decisions can be partly explained by the presence of inventories. Finally, 

the shape parameters for the log-logistic distribution of the inter-purchase-event times in Table 6 

indicate that the baseline hazard for a purchase first increases and then decreases with time, 

irrespective of the latent state.  

5.5.4 Investigating Price Endogeneity. Table 8 compares the price sensitivity estimates for the 

Full model with those from the NoEndo model to assess the benefits of accounting for price 

endogeneity. The bottom portion of Table 8 shows the correlations between the unobserved error 

in the price equation and each of the random shocks ( ' s ) for the four decisions. The results 

show mildly negative correlations for the quantity and quote acceptance decisions and a mildly 

positive correlation for the inter-purchase-event time and quote request decisions. These 

correlations are all in the expected direction and can imply that 1) despite the predominant 

practice of cost-plus pricing, the seller does occasionally target price-insensitive (sensitive) 

customers by charging them higher (lower) prices, and that 2) unobserved shocks could influence 

both the seller’s pricing decisions and the buyers’ behavior. Hence, a failure to properly account 
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for price endogeneity would result in overestimation of the effects of price gains, and 

underestimation of the impact of price losses (see Table 8). However, it should be noted that 

overall the differences in the price sensitivity estimates between the two models are relatively 

small. Moreover, the model fit statistics for the Full model and Model 4 in Table 3 also suggest 

that the gains from modeling price endogeneity are modest in our application.  

5.6 Disentangling the Effects of Pricing  

Assessing the marginal and the integrative impact of price is not straight forward from the 

reference price coefficients in Tables 4 and 6 as price enters in our model in multiple places. We 

therefore numerically compute the short-run and long-run elasticities for each of the four 

decision components and for the HMM state membership probabilities. The elasticity is 

calculated for each decision variable using a one-time shock (price increase or a price decrease) 

of 10% in the unit price from the average price. We take a horizon of 20 simulated purchase 

events subsequent to the one-time shock to calculate the short term and long-term impact. 

Following the one-time price shock, we set prices to the reference price level for the remaining 

19 purchase events. The short-term elasticity captures the immediate impact (i.e., on purchase 

event 1), whereas, the long-term elasticity is computed using the effect over the next 19 purchase 

events. These short- and long-term elasticities are reported in Table 9. In addition, Figures 1 and 

2 illustrate the asymmetric percentage increases and decreases in each affected variable over the 

simulated 20 periods following the one-time 10% price increase or decrease.  

 Several insights can be derived from Table 9 and the two figures. First, all price 

elasticities are in the expected direction. Second, the magnitudes of the long-term elasticities are 

generally much larger than the corresponding magnitudes of the short-term elasticities. On 

average, the short-term price elasticities are only 10%-50% of the total price elasticities. The 

average short-term quantity elasticities are consistent with those reported in Jedidi et al. (1999), 

and fall within the range of the price elasticities reported in the meta-analysis by Tellis (1988) 

and Bijmolt et al. (2005). Third, factors that are directly related to the buyers’ attitudes and 

relationship with the seller (i.e., quote request and vigilant state membership) exhibit stronger 
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long-term elasticities relative to other factors. Fourth, consistent with prospect theory and loss 

aversion (Kahneman and Tversky 1979), we find that price increases (losses) have a stronger 

impact than price decreases (gains) for all decisions, except quantity. The quantity decision, in 

contrast, exhibits gain seeking. Thus, in the context of the B2B retailer studied here, behavioral 

reference pricing effects are present and significant. Fifth, Figures 1 and 2 show that the negative 

effects of a price hike (loss) persist longer than the positive effects of price drop (gain). This 

result is consistent with the hedonic adaptation theory which states that individuals adapt faster 

to improvements than to deteriorations (Frederick and Lowenstein 1999). To the best of our 

knowledge, this is the first investigation of the long-term effects of asymmetric reference price 

effects, and the first empirical demonstration that the effect of price losses is not only stronger in 

magnitude than the effect of price gains, but also lasts longer.  

Overall, these results imply that in B2B contexts, studies that consider only the short-

term effects of pricing can significantly and substantially underestimate the overall impact of 

pricing. Furthermore, studies that do not examine the asymmetry in reference price effects 

caused by gains and losses can miss important insights into how B2B customers behave, both in 

the short and long run. From a managerial perspective, B2B sellers in general need to be cautious 

in increasing prices because of the immediate as well as the persistent negative impact of loss 

aversion and the protracted adaptation. In the next section, we investigate such issues and discuss 

how to leverage these behavioral insights to dynamically target individual customers using the 

model’s parameter estimates.  

6. Targeted and Dynamic Price Policy Optimization 

The separate and varied influences of price on the four customer decisions can be integrated 

using the metric of Long-term Customer Value (LCV; Gupta and Lehmann 2002) which captures 

the overall long-term impact of pricing. The LCV for customer i is the sum of the discounted 

stream of future profits. Specifically, customer value over the next iJ  purchase events can be 

written as: 
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where, b
ij  is a binary indicator that equals 1 when a quote is requested on purchase event j for 

customer i, and is zero for a direct order, w
ij is another binary indicator that equals 1 when the 

quote is accepted and is zero otherwise,  represents the discount rate, and ij is the cumulative 

time until the jth purchase event. The seller's objective is to design a targeted dynamic pricing 

policy for each customer to maximize the LCV. 

We conduct the optimization over a nine-month horizon. We therefore split the data into 

a calibration sample covering the duration from January to December 2007 and a holdout period 

ranging from January 2008 to September 2008.4 We then use the parameter estimates from the 

calibration dataset to conduct the price optimization over the holdout period of 9 months. The 

optimization is performed for a representative sample of 300 customers who experienced 

between 6 and 16 purchase events over the calibration period and an average of ten purchase 

events in the nine-month planning horizon. 

We discretize the continuous pricing decision on any purchase event to a set of five 

customer-specific price points that form the quintiles of the range of prices that the customer 

experienced in the calibration period. We choose to stay within each customer’s historical range 

of experienced prices to avoid a drastic change in the price regime while accounting for the price 

variance experienced by each customer. We then use a combination of forward simulation and 

complete enumeration over all feasible price paths to obtain the set of optimal prices over the 

purchase events of the customer in the nine-month planning horizon. The optimization process is 

initialized for each customer by setting the state membership probabilities and the reference price 

to their values at the end of the calibration period. The forward simulation proceeds by 

generating a sequence of purchase events, characterized by a new set of quantity, inter-event 

time, quote request decisions and the associated reference price and latent state-membership 

                                                 
4 For the purpose of price policy simulation, we re-estimate the proposed full model on the first 12 months of data, 
and perform simulation on the subsequent 9 months. The estimates do not differ substantially from those using 18 
months of data, reported in Table 4. 
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probabilities. At each simulated purchase event, profits are computed by weighting the HMM 

latent state-specific profits by the state membership probabilities. For each customer we 

simulated 200 random sequences of purchase events over all possible price paths. Given the 5 

price points at each purchase event, there are 5 ikJ  possible price paths for customer i, where Jik is 

the number of purchase events for customer i in the kth random sequence. We then use the 200 

Monte Carlo sequences to calculate the LCV by computing for each price path the average net 

present profits over the nine months, assuming a discount rate of 12% (a weekly discount rate r 

of 0.22%).5 This yields an optimal dynamic price policy for each customer.  Full details of the 

price simulation and optimization are available in the Appendix. 

6.1 Price Policy Simulation Results 

We now compare the performance of our proposed individually targeted dynamic pricing policy 

to that of six competing policies:  

(1) Individually targeted static pricing policy – In this policy a single price is determined for 

each buyer for the entire nine-month planning horizon. This leverages the heterogeneity in 

the model’s estimates across buyers but ignores dynamics.  

(2) Segment targeted dynamic policy – In this policy only two optimal prices are determined – 

one price for each of the two states. The price at a given purchase event therefore depends on 

the HMM state that the buyer belong to on that occasion.6 This policy accounts for dynamics 

arising from the latent transitions but enables limited targeting as only two possible prices are 

used.    

(3) Segment targeted static policy – Analogous to the segment targeted dynamic policy, this 

policy includes only two possible prices.  However, unlike in the dynamic segment policy, in 

this policy the buyer receives the same price for the entire planning horizon. This price is 

                                                 
5 We tested the improvement in precision that can be gained from increasing the number of draws. We find 
diminishing marginal gains in precision with number of draws. We choose 200 draws as a good compromise 
between precision and computational time, as it offers 8% improvement in profits over 100 draws, but only 
underperforms 300 draws by 1%. 
6 In the segment policies the latent state membership at each purchase event is determined by the state with the 
highest membership probability. 
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based on the buyer’s state membership in the first period of the planning horizon. Thus, this 

policy accounts for limited heterogeneity and ignores the possibility of transitions between 

the HMM states.  

(4) Aggregate single price static policy – This policy chooses a single price for all buyers for the 

entire planning horizon. Thus, this policy ignores both heterogeneity and dynamics.  

(5) Myopic individually targeted dynamic policy – In this policy, the seller accounts for both the 

buyers’ updated latent state membership and the heterogeneity in the buyers’ response 

parameters. However, at each purchase event, the seller maximizes profits only for the 

current purchase event as opposed to the entire planning horizon. Thus, policies (1) to (4) all 

use LCV maximization as the criterion when deciding which prices to charge, whereas, the 

myopic dynamic policy considers only the short-term effect of pricing in each period.  

(6) Current policy – This is the seller’s current pricing policy for the nine months.  

A comparison of the results from the alternative policies highlights the marginal 

improvements in profitability that stem from individual-level targeting, dynamic pricing, and 

from adopting a long-term perspective. Table 10 shows how the seven price policies perform. 

The proposed policy yields the highest LCV per customer of $4,795 over nine months. It 

outperforms the single static price policy by as much as 73%. The individually targeted static 

policy, which leverages heterogeneity, generates a 40% improvement in the LCV when 

compared to the aggregate static policy ($3,855 vs. $2,759). An additional 24% improvement 

results from dynamic targeting ($4,795 vs. $3,855). This result is consistent with the findings of 

Khan et al. (2009), which highlights the potential gains from inter-temporal targeting. Similarly, 

by leveraging the dynamic impact of pricing and by adopting a long-term perspective, the 

proposed policy improves profits by 17% over the myopic policy. 

The firm’s current policy is better than the static policies and yields profits similar to that 

of the segment dynamic policy. However, the current policy is worse than the individually 

targeted and dynamic policies. Finally, it is important to note that the proposed policy suggests a 

52% improvement in profitability over the status-quo. Taking into account the entire customer 
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base of the seller, this translates into a potential profit improvement of approximately $4 million 

annually. 

 Figure 3 shows the dynamic impact of different pricing policies by plotting the average 

monthly profits over the nine-month planning horizon. Several interesting insights can be 

gleaned from the figure. First, all the individual-level policies (static, dynamic or myopic) 

outperform the current policy, highlighting the rewards from individual-level targeted pricing. 

Second, the proposed policy generally dominates the static policy, showing the impact of 

temporal variation in pricing. Third, the proposed policy carefully balances the interplay between 

several forces that govern customers’ buying behaviors, namely, 1) charging lower prices to 

increase quote acceptance; 2) charging lower prices to keep customers in the relaxed state or to 

transition them towards it 3) charging higher prices to increase margins, and 4) charging higher 

prices to keep customers’ reference prices high. The myopic policy, on the other hand, ignores 

points 2) and 4), and therefore charges lower prices than the proposed policy aiming to convert 

quote-requests into immediate sales (see Table 10). This strategy leads to higher profits than the 

proposed policy in the first few months. However, charging lower prices results in lower 

reference prices, making it more likely that future prices are perceived as losses by customers. 

This subsequently increases the likelihood of customer migration to the vigilant state. The 

lowered reference prices create downward pressure on the seller to continue offering lower 

prices, which results in a vicious cycle of decreasing prices and hence depressed profits. After 

the first three months, the proposed policy begins to outperform the myopic policy, thus 

demonstrating the importance of a long-term perspective when setting prices. Thus, Figure 3 

suggests that in the world of B2B, where long-term relationship are crucial, myopia in price 

setting can be a slippery slope.  

6.2 Pricing to Customers in the Vigilant and Relaxed States  

Recall that Table 5 highlights the differences in customer behavior in the vigilant and relaxed 

states. We now examine how these parameter differences translate into differences in the 

targeted pricing policy and the LCV for these states. To do so, we assign the customer to the 
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state with the highest posterior probability (see Equation 15). The resulting distributions of the 

state-specific LCVs are shown in Figure 4. Customers who are in the vigilant state have an 

average LCV of $3,551 relative to an average LCV of $6,137 for those on relaxed state. Figure 4 

illustrates that the stark contrast in profitability across the two states results in a bimodal pattern 

of the overall LCV distribution.  

To better understand how the proposed pricing strategy leverages the state membership to 

drive profitability, we plot in Figure 5 the monthly LCV values in conjunction with the 

proportion of customers who are in relaxed state in a given month. The figure shows that the 

pricing policy effects a transition from the vigilant state to the relaxed state over the planning 

horizon. This shift is most pronounced in the first few months. Once customers transition to the 

relatively sticky relaxed state after the first few months, they are likely to stay there and 

contribute much higher profits and LCV in the remaining months.  

Figure 6 shows how the optimal pricing policy differs across the two states. The proposed 

price policy recommends a much higher price for customers who are in the relaxed state versus 

those that are in the vigilant state ($3.65/lb vs. $3.22/lb). The current policy that is used by the 

seller, however, does not price differentiate between customers in the two latent states. Charging 

a higher price for customers in the relaxed state can increase both the immediate profits and the 

reference prices in the long-term. Although a higher price might increase the chance of 

transitioning these customers into the vigilant state, the stickiness of the relaxed state and the 

already increased reference prices act as a “shield” against perceiving future prices as losses. In 

contrast, charging lower prices for customers who are in the vigilant state can help transition 

them to the relaxed state. 

In summary, the superior profitability of our individual dynamic targeted price policy, 

relative to the current policy stems from its ability to leverage the 1) heterogeneity in price 

sensitivities 2) differences across the latent states so that higher prices can be charged to the less 

price sensitive customers in the relaxed state and 3) tradeoff between the short and long-run 

impacts of pricing arising from the different sources of dynamics in customer behavior.  
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6.3 Pricing in a Volatile Economic Environment - the Role of External Reference Price 

In this section we examine the optimal price strategies that the seller should use to manage 

volatile economic conditions . Specifically, we look at how exogeneous fluctuations in the raw 

aluminum prices on the LME would impact optimal pricing decisions.  

The aluminum prices on the LME fluctuated between US$2,393 to US$3,318 per tonne 

over the duration of our data. Much of this fluctuation occurred from August 2007 until January 

2008 after an initial period of price stability in the first half of 2007. A change in the commodity 

prices can lead to at least two opposing impacts on the profitability of the seller. On the one 

hand, alumnium prices influence the seller’s cost of replensihment7. On the other hand, buyers 

use the price on the LME as an external reference price. Thus, rising alumnimum prices, for 

example, increase the seller’s future costs, but at same time serve as a high reference price for 

buyers, influencing them to buy larger quantities, order directly, or accept price quotes more 

readily. It is therefore unclear a-priori how the seller should change its pricing strategy in 

response to such fluctuations in the commodity market. We investigate this empirically by 

computing our individual dynamic price policy under two scenarios; 1) a 20% increase in the 

LME prices over the actual LME prices in the nine-months of the planning horizon, and 2) a 

20% decrease over the same period. We then compare the resulting prices and profits to those at 

the original LME levels.8  

 Figure 7 shows the distribution of the optimal prices under each LME regime. For a 20% 

increase in the LME prices, the mean optimal price is $3.70 – a 9% price increase relative to the 

optimal price under the original LME levels ($3.39). However, when the LME drops by 20%, the 

optimal policy suggests a mean price of $3.30, which is a meager 2.7% price reduction. Figure 8 

shows additional implications for the customers in the relaxed and vigilant states. We see that 

when the LME price increases by 20%, it is optimal for the seller to pass through this increase in 

                                                 
7 The seller in our empirical application keeps up to six months of inventory, so the relationship between the LME 
prices and wholesale prices of currently sold orders  is relatively weak (R2=0.05), but the LME impacts directly the 
wholesale cost of replinshment. 
8 Our use of a 20% shock in LME falls within the range of fluctuations observed during the data period. The 
maximum daily, monthly and 3-monthly LME fluctuations in our data were 5.6%, 22%, and 31%, respectively. 
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replacement cost by increasing the unit prices by 12% for customers who are in the vigilant state. 

In comparison, a modest increase of 4.6% is optimal for customers in the relaxed state. This 

result is consistent with the higher sensitivity to changes in the LME prices for the customers 

who are in the vigilant state, relative to the customers who are in the relaxed state (see Table 4). 

Figure 8 also shows that when LME prices drop by 20%, it is optimal for the firm to “hoard” 

most of the cost saving and drop prices by only 2.5%-2.8% for customers in both states. The 

rationale here is that lowering the price results in a corresponding lowering of the internal 

reference price, and this can have long terms consequences for the seller’s profitability.  

This price strategy of passing on the cost increase and “hoarding” the benefit of a cost 

decrease is consistent with the dual entitlement principle (Akerloff 1979, Kahneman et al. 1986, 

Okun 1981, Urbany et al. 1989). The dual entitlement principle states that 1) customers use 

reference cues when making transactions; 2) firms are “justified”, in the eyes of customers, to 

increase prices when costs increase, in order to protect firms’ normal profits; and 3) firms do not 

need to lower prices when costs drop, because customers perceptions are mainly driven by their 

past reference prices. While we do not model fairness directly, the external and internal 

asymmetric reference prices capture similar effects. To the best of our knowledge, this is the first 

paper to empirically demonstrate the dual-entitlement principle and measure its extent in a B2B 

transaction setting.  

How does the above pricing strategy translate into long-term profitability? Figure 9 

shows the LCV under each LME regime and broken down by each state. We find that when the 

LME increases, the firm is “entitled” to keep the normal profits it had prior to the price increase 

(the LCV drops only slightly from $4,795 to $4,701). However, the optimal price response to a 

drop in LME prices increases the LCV by approximately 7%, from $4,795 to $5,103.  

In summary, to profitably manage fluctuations in economic conditions, sellers should 

pass on the most of the cost increases, especially to buyers who are in the vigilant state. In 

contrast, cost decreases present a good opportunity for sellers to enjoy a period of heightened 

profitability by keeping prices the same, at least in the short-run. 
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7. General Discussion 

Understanding and managing the impact of pricing on buyer behavior is critical for firms’ 

profitability in the long-run. The ability to customize prices for each customer at each transaction 

allows firms to extract additional profits from the customer base. To ensure long-term 

profitability from each customer, firms need to model the multifaceted nature of the customer 

buying process taking into account preference heterogeneity and response dynamics. 

Furthermore, firms need to appropriately factor in both the short-term and long-term impact of 

pricing when setting prices to maximize long-term customer value.  

In this paper, we present an integrative framework to model the customer-level and long-

term impact of pricing decisions in B2B settings. Our framework jointly models the interrelated 

customer decisions via copulas, captures the response dynamics and the long-term effect of 

pricing decisions via a non-homogeneous HMM, and accounts for potential price endogeneity in 

a Bayesian control function framework. To the best of our knowledge this is the first paper to 

incorporate copulas as well as price endogeneity within a HMM.  

We identify several substantive insights in the under-researched area of B2B pricing. 

First, we uncover how industrial customers may transition over time between a relaxed and a 

vigilant state of buying behavior. Second, we find that pricing in B2B contexts significantly 

influences customer decisions not only in the short-run but also in the long-term. Thus, B2B 

pricing models that do not account for the long-term effects may severely underestimate the 

impact of pricing. Third, despite the view that B2B customers are rational, we find significant 

asymmetric reference effects. Fourth, we find that the impact of a price “loss” is not only 

stronger than that of a price "gain”, but that it also takes much longer for customers to adapt to 

losses. Therefore, sellers should be cautious of the potential long-term impact of either lowering 

the reference prices of buyers or of charging a higher price on any particular order.  

Using a series of price policy simulations, we demonstrate that the proposed dynamic 

targeted price policy can offer up to 52% improvement in long-term customer profitability over 

the firm’s current pricing policy. Further, we show that the LCV of a customer in the relaxed 
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state is almost twice as high as that of customers in the vigilant state. The proposed policy 

balances two forces 1) lowering prices to win business and to transition or keep customers in the 

relaxed state, and 2) increasing prices to maximize margins and thereby avoid a decrease in the 

internal reference price.  

We use a what-if simulation to investigate what the optimal pricing policy suggests in a 

volatile economic environment with cost fluctuations. We find that the seller should pass on a 

part of the increased costs to customers, but in contrast, should "hoard” most of the benefit when 

costs decrease. This active management can help the seller maintain existing levels of 

profitability during inflationary periods and enjoy increased profitability during deflationary 

periods. These policy implications are consistent with the dual-entitlement principle. 

More generally, this research offers B2B sellers a comprehensive modeling framework to 

manage their customer base via dynamic price targeting. As many B2B sellers routinely apply 

cost-based pricing strategies (Anderson et al. 1993), we demonstrate that there is substantial 

value in using a value-based pricing policy, taking advantage of the flexibility to implement first-

degree inter-temporal price discrimination.  

We highlight several limitations and directions for future research. First, we assume that 

customers are not forward looking with respect to the seller’s pricing decisions. One could 

extend our framework to incorporate customer’s expectation about future price changes (e.g., 

Lewis 2005). Second, as is typical in CRM contexts, our dataset does not include competitive 

information. While quote requests and unfulfilled quotes provide indirect evidence for 

competition, if competitive data are available directly, one can extend our framework to this 

setting. Third, while we focus here on B2B pricing, our methodological framework is also 

appropriate for those B2C settings in which the customer buying process is composed of several 

interrelated decisions, and where the firm has the opportunity to price discriminate to varying 

degrees. Finally, in this paper we take an initial step toward studying the under-explored terrain 

of B2B pricing using a specific empirical application of a metals retailer selling to industrial 
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buyers. Future researchers can extend our framework to other B2B environments to investigate 

further the generalizability of our conclusions.   
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Appendix – Price Simulation Procedure 
We initialize the simulation by calculating for each customer the state membership probability 

and the reference price at end of the calibration period. The simulation procedure continues as 

follows:  

1. Draw for each customer for the first purchase event four independent uniform variates     

( 1u , 2v , 3u , 4v ) and use the same random draws for all price points at the purchase event. 

2. Using the Frank copula (Nelsen 2006) convert 2v  to 2u  
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where, qt
 
is the dependence parameter for the Frank copula for the quantity and inter-

purchase event time decisions. 

3. Generate state specific quantity sijq such that 1
1( )sij qq F u  with mean qij six β  and 

parameter  .  

4. Update the quantity weighted reference price.  

5. Conditioned on sijq , generate sijt such 1
2( )sij tt F u  with mean qij six β  and parameter s .9 

6. Convert 4v  to 4u  using the Frank copula as in point 2 above using the copula parameter bw . 

7. Calculate the latent utility for quote request *
sij bijb e ij bsix β , where  
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8. Calculate the latent utility for quote request, where *
sij w wijw e ij six β , where 

4

4

ln
1wij

u
e

u

 
     

The observed decisions sijb and sijw  are governed by the underlying latent utilities as 

described in section 4.3.2.  

                                                 
9 Because quantity and inter-purchase event time can have extreme values, which can determine other decisions and 

reference price going forward, we truncate extreme draws of sijq and sijt . Specifically, we resample sijq or sijt  if the 

current draw is less than half of the minimum, or more than double of the maximum values experienced by the 
customer during the calibration period. 
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9. Given the four state-specific behaviors, calculate state-conditional profits. The 

unconditional profit for the purchase event is calculated as the weighted average of the 

state-conditional profits, weighted by state-membership probability for the purchase 

event.  

10. Update the state membership for each customer using Equation (15). 

11. For each price point in the current purchase event, repeat steps 1-10 to generate the 

profits in the next purchase event for each new possible price point.  

12. Repeat step 11 until the cumulative inter-purchase-event time just exceeds the planning 

horizon (9 months). This step would result in 5 iJ  possible price paths for the customer, 

where 5 is the number of price points, and Ji is the number of purchase events for 

customer i in the planning horizon.   

13. Repeat step 1-12, 200 times to generate 200 Monte Carlo profit draws for each possible 

price path for each customer.  

14. Calculate the average LCV of each price path across the 200 draws. Choose the price 

path with the highest average LCV as the optimal price path for that customer.   

15. Repeat steps 1-14 for each customer.  

For the purpose of profit calculations we make several assumptions based on discussion with the 

seller: (1) we use a discount rate of 12% (a weekly discount rate r of 0.22%); (2) for cost we use 

actual average wholesale price recorded by the seller for each date in the planning horizon; (3) 

we add a $50 fixed cost to each order to capture shipping and administrative costs (4) we use the 

actual LME commodity prices on each day of the planning horizon.  
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Table 1: Overall Statistics 

Number of customers 1,859 
Overall number of observations (purchase events) 33,925 

Proportion of direct purchases 0.53 

Proportion of quotes that are accepted 0.47 
 

 
Table 2: Descriptive Statistics Per Customer 

  Mean Std. Dev Lower 10% Median Upper 90% 
Total number of purchase events 23.6 20.8 8.0 16.0 52.0 
Proportion of direct orders 55.6 24.6 21.4 57.1 87.5 
Order amount for direct orders (US$) 861 1,636 100 402 1,932 
Order amount for quote requests (US$) 1,724 3,445 165 667 3,770 
Purchase event amount (US$) 1,236 1,471 292 808 2,458 
Quantity (lbs) 457 553 92 288 968 
Inter-purchase-event time (weeks) 6.41 4.31 1.80 5.23 12.45 
Unit price (US$) 3.24 0.76 2.44 3.08 4.29 

* Numbers in bold represent the best fit/predictive ability from among the five models. 

 

Table 3: Model Selection and Predictive Validity 

  Full  model 
Benchmark 1 

NoHet 
Benchmark 2 

Indep 
Benchmark 3 

NoDyn 
Benchmark 4 

NoEndo 
  Heterogeneity Yes No  Yes Yes Yes 
  Interdependence Copula+HMM Copula+HMM No  Copula  Copula+HMM 

 Dynamics 
HMM + 

Reference Price 
 HMM + 

Reference Price  Reference Price No Dynamics 
     HMM + 

Reference Price 

 Control Function Yes Yes Yes Yes No  
LMD -62,531* -90,223 -68,959 -72,173 -62,956 
DIC 129,996 180,899 141,478 148,218 130,675 
Complexity pD 4,779 75 3,432 3,253 4,763 
Validation LL -15,961 -20,947 -16,455 -16,789 -16,009 

  
In-

sample 
out-

sample 
In-

sample 
out-

sample 
In-

sample 
out-

sample 
In-

sample 
out-

sample 
In-

sample 
out-

sample 

Hit Rate  Quote request 0.75 0.65 0.63 0.60 0.69 0.64 0.65 0.63 0.75 0.65 
Quote acceptance 0.72 0.59 0.59 0.57 0.68 0.61 0.67 0.60 0.72 0.59 

RMSE Quantity 0.95 1.03 1.73 1.74 1.04 1.07 1.09 1.08 0.95 1.03 
Inter-purchase time 16.22 20.03 25.32 28.65 21.74 23.18 21.18 22.28 16.25 20.07 
Quote request 0.53 0.59 0.62 0.91 0.61 0.63 0.60 0.68 0.53 0.59 
Quote  acceptance 0.55 0.67 0.77 1.01 0.67 0.68 0.73 0.72 0.55 0.67 

MAD Quantity 0.42 0.42 0.72 0.70 0.42 0.47 0.46 0.50 0.42 0.42 
Inter-purchase time 12.15 14.85 18.49 18.85 14.98 16.00 14.88 15.67 12.17 14.88 
Quote request 0.31 0.37 0.45 0.55 0.32 0.39 0.36 0.43 0.31 0.37 
Quote acceptance 0.41 0.49 0.63 0.76 0.40 0.48 0.40 0.49 0.41 0.49 
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Table 4: Parameter Estimates for the Four Decisions – Posterior Means, Standard 
Deviations, and 95% Posterior Intervals*,** 

 
4a – Quantity Decision 

  Parameter 
Aggregation 

Level*** Mean 
Std 
Dev. 2.50% 97.50% 

Quantity              
State1 Intercept RE 1.823 0.039 -1.897 -1.751 

Gain(j-1) RE 0.004 0.021 -0.037 0.043 
Loss(j-1) RE -0.035 0.013 -0.061 -0.010 
LME(j) RE 0.029 0.129 -0.220 0.268 
LME_Volatility(j) RE -0.782 0.486 -1.720 0.122 

State2 Intercept RE -1.523 0.033 -1.587 -1.461 
Gain(j-1) RE 0.133 0.019 0.096 0.169 
Loss(j-1) RE -0.096 0.014 -0.123 -0.070 
LME(j) RE 2.813 0.539 1.774 3.815 
LME_Volatility(j-1) RE -3.350 1.054 -5.383 -1.390 

 
4b –  Inter-Purchase-Event Time Decision 

  Parameter 
Aggregation 

Level Mean 
Std 
Dev. 2.50% 97.50% 

Inter-purchase-event time             
State1 Intercept RE 0.977 0.029 0.919 1.035 

Quantity(j-1) FE -0.009 0.029 -0.067 0.048 
Gain(j-1) RE -0.062 0.014 -0.091 -0.034 
Loss(j-1) RE 0.046 0.014 0.019 0.074 

       
State2 Intercept RE 0.854 0.031 0.793 0.915 

Quantity(j-1) FE 0.031 0.021 -0.010 0.072 
Gain(j-1) RE -0.016 0.016 -0.047 0.016 
Loss(j-1) RE 0.037 0.010 0.016 0.057 
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*Posterior means and standard deviations are calculated across the MCMC draws. 
** Estimates in bold indicate a significant effect (that is, 95% posterior interval exclude 0). 
*** RE represent random-effect parameter and FE represent fixed-effect (common) parameter. 

4c – Quote Request Decision 

  Parameter 
Aggregation 

Level Mean 
Std 
Dev. 2.50% 97.50% 

Quote request vs. direct order 
behavior (quote request=1)             
State1 Intercept RE -1.125 0.034 -1.190 -1.062 

Quantity(j) FE 0.418 0.097 0.230 0.599 
Interpurchase time(j) FE 0.030 0.004 0.023 0.036 
Gain(j-1) RE -0.081 0.026 -0.132 -0.033 
Loss(j-1) RE 0.096 0.024 0.050 0.140 
LME(j) RE -0.981 0.878 -2.674 0.652 
LME_Volatility(j) RE 1.180 1.056 -0.858 3.144 

State2 Intercept FE 1.037 0.080 0.881 1.186 
Quantity(j) FE 2.090 0.575 0.981 3.160 
Interpurchase time(j) FE 0.004 0.007 -0.009 0.017 
Gain(j-1) RE -0.312 0.015 -0.340 -0.285 
Loss(j-1) RE 0.768 0.017 0.735 0.799 
LME(j) RE -1.880 0.589 -3.017 -0.784 
LME_Volatility(j) RE 3.349 1.293 0.854 5.753 

 
 

4d –  Quote acceptance  Decision 

  Parameter 
Aggregation 

Level Mean 
Std 
Dev. 2.50% 97.50% 

Quote acceptance vs. rejection 
behavior (accept=1)             
State1 Intercept RE 0.214 0.015 0.186 0.242 

Quantity(j) FE -0.220 0.032 -0.281 -0.162 
Interpurchase time(j) FE 0.002 0.017 -0.031 0.033 
Gain(j) RE 0.211 0.015 0.183 0.239 
Loss(j) RE -0.180 0.016 -0.212 -0.150 
Quantity(j) x Gain(j) RE 0.087 0.018 0.051 0.121 
Quantity(j) x Loss(j) RE -0.047 0.016 -0.079 -0.017 
LME(j) RE 0.212 0.500 -0.752 1.141 
LME_Volatility(j) RE -0.362 1.056 -2.399 1.602 

State2 Intercept RE 0.096 0.049 0.002 0.187 
Quantity(j) FE -0.530 0.046 -0.618 -0.444 
Interpurchase time(j) FE -0.032 0.008 -0.046 -0.017 
Gain(j) RE 0.133 0.015 0.104 0.161 
Loss(j) RE -0.211 0.020 -0.250 -0.173 
Quantity(j) x Gain(j) RE 0.285 0.015 0.256 0.312 
Quantity(j) x Loss(j) RE -1.518 0.018 -1.554 -1.484 
LME(j) RE 1.055 0.460 0.164 1.884 

 LME_Volatility(j) RE -2.398 1.123 -4.751 -0.079 
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Table 5: Description of the Two HMM States 

  “Relaxed” State  “Vigilant” State  

Quote request probability  23% 86% 
Quote accept probability  65% 52% 
Average quantity ordered 432 lb  502 lb  
Inter-purchase time  5.5 weeks  8.1 weeks  
Average price elasticity  1.3 3.4 
Average loss aversion ratio  0.92 3.11 
Average sensitivity to LME 0.8 6.7 

 
 

Table 6: HMM and Distributional Parameter Estimates*,** 

  Parameter 
Aggregation 

Level*** Mean Std Dev. 2.50% 97.50% 

Transition matrix             
State1 Intercept RE 2.078 0.026 2.027 2.127 

Gain(j-1) RE 0.052 0.018 0.017 0.086 
Loss(j-1) RE -0.105 0.018 -0.140 -0.072 

State2 intercept,   RE 2.514 0.043 2.431 2.594 
Gain(j-1) RE -0.505 0.018 -0.539 -0.471 

  Loss(j-1) RE 0.712 0.019 0.675 0.748 
Initial state membership probability           
  Vigilant state (π) RE 0.697 0.030 0.639 0.752 
Distributional Parameters             
Std dev. for the quantity model, log scale (σ) FE 0.126 0.052 0.027 0.222 
State 1 Shape parameter for inter-purchase event 
time, log scale (α1) FE 0.116 0.019 0.079 0.152 
State 2 Shape parameter for inter-purchase event 
time, log scale (α2) FE 0.079 0.012 0.055 0.102 
Frank copula parameter for inter-purchase even 
and quantity (θqt) FE 0.606 0.178 0.264 0.937 
Frank copula parameter for quote request and 
quote acceptance (θbw) FE -10.023 0.563 -11.110 -8.975 

*Posterior means and standard deviations are calculated across the MCMC draws. 
** Estimates in bold indicate a significant effect (that is, 95% posterior interval exclude 0). 
*** RE represent random-effect parameter and FE represent fixed-effect (common) parameter  
 
 

 
Table 7: Posterior Mean of the Transition Matrix Across Buyers 

10% Price Decrease 
Average price      

(reference price) 10% Price Increase 

Relaxed 
(j+1) 

Vigilant 
(j+1) 

Relaxed 
(j+1) 

Vigilant 
(j+1) 

Relaxed 
(j+1) 

Vigilant 
(j+1) 

Relaxed 
(j) 

0.895 0.105 
 

0.864 0.136 
 

0.795 0.205 

Vigilant 
(j) 

0.096 0.904 
 

0.078 0.922 
 

0.043 0.957 
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Table 8: Reference Price Coefficients – Full Model vs. NoEndo Model* 

Full Model NoEndo 

  Parameter Coefficient 
Std 
Dev. 

Coefficient 
Std 
Dev. 

Quantity            
Relaxed Gain(j-1) 0.004 0.021 0.007 0.016 

Loss(j-1) -0.035 0.013 -0.028 0.011 

Vigilant Gain(j-1) 0.133 0.019 0.150 0.013 
  Loss(j-1) -0.096 0.014 -0.072 0.010 

Inter-purchase-event time           
Relaxed Gain(j-1) -0.062 0.014 -0.079 0.013 

Loss(j-1) 0.046 0.014 0.047 0.013 

Vigilant Gain(j-1) -0.016 0.016 -0.025 0.014 
Loss(j-1) 0.037 0.010 0.032 0.008 

Quote request vs. direct order behavior (quote request=1)       
Relaxed Gain(j-1) -0.081 0.026 -0.122 0.025 

Loss(j-1) 0.096 0.024 0.118 0.019 

Vigilant Gain(j-1) -0.312 0.015 -0.390 0.018 
Loss(j-1) 0.768 0.017 0.689 0.018 

Quote acceptance vs. rejection behavior (accept=1)       
Relaxed Gain(j) 0.211 0.015 0.253 0.014 

Loss(j) -0.180 0.016 -0.182 0.017 

Vigilant Gain(j) 0.133 0.015 0.145 0.017 
  Loss(j) -0.211 0.020 -0.224 0.020 
Inferred Correlation Structure w/ Price         
Quantity Relaxed -0.011 0.012 

Vigilant -0.021 0.013 

Inter-purchase-event time Relaxed 0.017 0.016 
Vigilant 0.025 0.016 

Quote request Relaxed 0.134 0.072 
Vigilant 0.211 0.065 

Quote acceptance Relaxed -0.108 0.059 
  Vigilant -0.144 0.061     
Log Marginal Density (LMD)   -62,531     -62,956 
* Estimates in bold indicate a significant effect (that is, 95% posterior interval exclude 0). 
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Table 9: Short- and Long-term Price Elasticities of the Decision Components and the 
Vigilant State Membership 

Price Increase  Price Decrease 

Short-term Long-term Total  Short-term Long-term Total 

Quantity -0.43 -2.73 -3.21  1.39 3.05 4.53 

Inter-purchase-event Time 1.22 2.34 3.57  -0.71 -0.62 -1.35 

Quote Request 0.73 4.91 5.72  -0.53 -1.59 -2.16 

Quote Acceptance -1.19 -3.42 -4.65  0.38 0.97 1.37 

Vigilant State Membership 0.62 5.47 6.18  -0.31 -1.38 -1.72 

 

 

Table 10: Policy Performance Comparison Over Nine Months 

Policy 

Current 
Pricing  

Individual 
Dynamic 
Pricing  

Individual 
Static 

Pricing 

Segment 
Dynamic 
Pricing 

Segment 
Static 

Pricing 

Aggregate 
Static 

Pricing 

Individual 
Dynamic 
Pricing 

(Myopic) 

Average 
LCV Per 

Customer ($) 
$3,158 $4,795 $3,855 $3,318 $2,759 $2,457 $4,105 

Mean Price 
($/lb) 

$3.24 $3.39 $3.27 $3.43 
$3.29  

($3.3; $2.9)* 
$3.40 $3.27 

Median Price 
($/lb) 

$2.87 $3.29 $3.10 $3.22 N/A N/A $3.10 

 

* Optimal prices in the relaxed and vigilant states, respectively. 
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Figure 1: Duration of the Asymmetric Price Effects on the Four Decision Components 
 

 
 
 
 
 
 

Figure 2: Duration of the Asymmetric Price Effects on Vigilant State Membership 
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Figure 3: Policy performance Comparison Over Nine Months 

 

 
 

Figure 4: Long-term Customer Value (Nine months) 
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Figure 5: Relaxed State Membership and Profitability over Time 
 

 

 

Figure 6: Optimal and Current Unit Price per Pound by State 
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Figure 7: Price Distributions at Different LME Levels 

 

 

Figure 8 – Optimal and Current Unit Price per Pound by State, under Different LME Regimes 
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Figure 9 – LCV per State, under Different LME Regimes 
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